作為一位剛到崗的人民教師,我們要有很強(qiáng)的課堂教學(xué)能力,寫教學(xué)反思可以快速提升我們的教學(xué)能力,那么問題來了,教學(xué)反思應(yīng)該怎么寫?
《乘法分配律》教學(xué)反思 1
乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學(xué)生理解。
一、抓住重點。讓學(xué)生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運(yùn)算律。這樣的安排,便于學(xué)生經(jīng)歷觀察、分析、比較和根據(jù)的。過程。能使學(xué)生在合作交流的過程中,對簡潔分配律的認(rèn)識由感性逐步上升到理性。教學(xué)用書上寫道:教學(xué)的重點和關(guān)鍵應(yīng)是引導(dǎo)學(xué)生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學(xué)時,我是按照如上的步驟進(jìn)行教學(xué)的。可是在我引導(dǎo)學(xué)生把算式寫成等式的時候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進(jìn)行聯(lián)系。根本沒有從數(shù)字上面去進(jìn)行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達(dá)這一規(guī)律。場面一時之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進(jìn)行表達(dá)。難道是坡度給得不夠嗎?還是平時的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。
總之,這個關(guān)鍵今天并沒有完成好。
二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。
三、練習(xí)中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74.一定要學(xué)生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時也是一樣。
今天教學(xué)了運(yùn)算律——乘法分配律,對于例題的解決,學(xué)生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結(jié)果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學(xué)生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學(xué)生再仿寫了幾個算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學(xué)生把第3小題填錯,其實包括后面的練習(xí)中,把A*C+B*C改寫成(A+B)*C的正確率要比把(A+B)*C改寫成A*C+B*C的正確率高,可能還是學(xué)生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學(xué)會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74*(21+1)和74*21+74部分學(xué)生沒有發(fā)現(xiàn)它們是相等的,我讓認(rèn)為相等的學(xué)生表述理由,學(xué)生能把算式改寫成74*21+74*1再運(yùn)用乘法分配律變形成74*(21+1),學(xué)生理解后我補(bǔ)充77*99+77=□(□○□)讓學(xué)生填空,完成情況好多了,在拓展練習(xí)時補(bǔ)充了A*B+B=□(□○□)和A*B+B=□(□○□)讓學(xué)生進(jìn)一步真正理解乘法分配律的意義。但學(xué)生在完成想想做做第5題時,學(xué)生多習(xí)慣列式48*3+48*2來計算,卻不能靈活運(yùn)用所學(xué)知識列成(3+2)*48來計算,雖然運(yùn)用乘法分配律進(jìn)行簡便計算是下一課的學(xué)習(xí)內(nèi)容,但我也由此反思出我教學(xué)的不足之處,在例題教學(xué)時只關(guān)注了得出等式,卻忽略了讓學(xué)生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補(bǔ)上了這一點。
乘法分配律課后教學(xué)反思 2
乘法分配律是四年級學(xué)習(xí)的重點,也是難點之一。它是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的,是一節(jié)比較抽象的概念課,教學(xué)是我根據(jù)教學(xué)內(nèi)容的特?
一、在對本節(jié)課的教學(xué)目標(biāo)上,我定位在:
(1)通過學(xué)生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。
(2)初步感受乘法分配律能使一些計算簡便。
(3)培養(yǎng)學(xué)生分析、推理、概括的思維能力。
二、結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進(jìn)行以下幾點簡要分析:
1、總體上我的教學(xué)思路是由具體——抽象——具體。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,老師都予以肯定和表揚(yáng),目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
2、從學(xué)生已有知識出發(fā)。
教師要深入了解各層次學(xué)生思維實際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費(fèi)寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計算引入,有復(fù)習(xí)舊知,也有比一比誰的計算能力強(qiáng)開場。我想是不是可以拋開計算,帶著愉快的心情進(jìn)課堂,因此,我在一開始設(shè)計了一個植樹的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點較低,學(xué)生比較容易接受。
3、鼓勵學(xué)生大膽猜想。
猜想是科學(xué)發(fā)現(xiàn)的前奏。學(xué)生的學(xué)習(xí)活動中同樣不能沒有猜想,否則,主體性探究 活動便缺少了內(nèi)在的動力,自主學(xué)習(xí)的過程也成了失去目標(biāo)的無意義操作。學(xué)生看到加法交換律和加法結(jié)合律,從直觀上產(chǎn)生了關(guān)于乘法運(yùn)算定律的猜想。于是,接下來的舉例就成了驗證猜想的必需,無論猜想的結(jié)論是“是”還是“非”,學(xué)生的思維一直是活躍著的,對學(xué)生都是有意義的。這個過程是教會學(xué)生 學(xué)習(xí)與掌握探索方法的過程,是培養(yǎng)學(xué)生學(xué)習(xí)品格的過程。
4、師生平等交流。
教學(xué)過程是師生共創(chuàng)共生的過程,新課程確定的培養(yǎng)目標(biāo)和所倡導(dǎo)的學(xué)習(xí)方式要求 教師必須轉(zhuǎn)換角色。改變已有的教學(xué)行為,教師必須從“師道尊嚴(yán)”的架子中走出來,與學(xué)生平等地參與教學(xué),成為共同建構(gòu)學(xué)習(xí)的參與者。在以上教學(xué)片斷中,教 師讓學(xué)生充分經(jīng)歷學(xué)習(xí)過程,調(diào)動學(xué)生學(xué)習(xí)的熱情:猜想——傾聽——舉例——驗證,在 欣賞學(xué)生的“閃光”處給學(xué)生“點撥”。教師沒有過多的講授,也沒有花大量的時間去 刻意的創(chuàng)設(shè)教學(xué)情境,只是做喚醒學(xué)生主體意識的工作,引導(dǎo)學(xué)生大膽猜想,大膽表達(dá)。學(xué)生借助已有的知識經(jīng)驗,自主解決新問題,使學(xué)生的主體地位得以體現(xiàn)。
5、將學(xué)生放在主體位置。
把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題。在探究這一系列的等式有什么共同點的活動中,學(xué)生涌現(xiàn)出的各種說法,說明學(xué)生的智力潛能是巨大的。所以我在這里花了較多的時間,讓學(xué)生多說,談?wù)劯髯圆煌目捶ǎ?a href=http://www.zzjyg.cn/jiaoyu/19416.html target=_blank class=infotextkey>說說自己的新發(fā)現(xiàn),教師盡可能少說,為的就是要還給學(xué)生自由探索的時間和空間,從而能使學(xué)生的主動性、自主性和創(chuàng)造性得到充分的發(fā)揮。
三、教學(xué)中的不足和改進(jìn)之處:
在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運(yùn)用時問題較多等,今后的工作中,要多向以下幾個方面努力:
1、多聽課,多學(xué)習(xí)。尤其是優(yōu)秀教師的課,學(xué)習(xí)他們的新思想、新方法,改善課堂教學(xué),提高課堂教學(xué)藝術(shù)和課堂效率。
2、加強(qiáng)同科組教師之間的溝通和交流,相互學(xué)習(xí),取長補(bǔ)短,共同進(jìn)步。
3、認(rèn)真鉆研教材,把握好教材的重點、難點、關(guān)鍵點、易混點,上課時才能做到心中有數(shù),游刃有余。
《乘法分配律》教學(xué)反思 3
1、在思考如何設(shè)計《乘法分配律練習(xí)課》之前,我收集了一些本校四年級學(xué)生的錯題,進(jìn)行分析,了解學(xué)生的學(xué)習(xí)現(xiàn)狀,針對學(xué)生普遍存在的問題進(jìn)行教學(xué)設(shè)計。
2、經(jīng)過調(diào)查發(fā)現(xiàn)學(xué)生出現(xiàn)錯誤的根本原因在于不理解算式的意義,僅僅停留在題目表面,先找相同因數(shù),再套用公式,不能按照算理正確地思考簡算過程。所以我認(rèn)為,這節(jié)練習(xí)課應(yīng)該從最樸素的算理——乘法的意義出發(fā),抓住問題本質(zhì),才能對癥下藥。教學(xué)中我通過兩個判斷練習(xí),引導(dǎo)學(xué)生從乘法意義的角度理解乘法分配律,從學(xué)生的反饋來看,這樣的設(shè)計教學(xué)效果比較合理科學(xué)的,學(xué)生在進(jìn)行簡算時已經(jīng)有了檢查的意識。而不再是盲目地套用格式。
3、通過將乘法分配律常見題型進(jìn)行歸類,不同題型采用了不同的小妙招來解決,題目形式變化,解決方法也不同,但只要符合“幾個幾加上幾個幾”的意義,緊扣每一步都相等,就能夠借助乘法分配律進(jìn)行簡算。學(xué)生對這4個簡算小妙招比較感興趣,從練習(xí)反饋來看學(xué)習(xí)效果比較好。
本節(jié)課的教學(xué)設(shè)計合理、教學(xué)重難點突出,教學(xué)目標(biāo)明確、教學(xué)效果比較好。當(dāng)然也有一些不足之處:在計算大長方形的`面積時,課件上呈現(xiàn)的數(shù)字要把單位帶上,如果時間允許,最好給學(xué)生5分鐘左右的集中練習(xí)的時間。
《乘法分配律》教學(xué)反思 4
乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運(yùn)算定律以及乘法交換律和結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。在五大運(yùn)算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律進(jìn)行簡便計算 。
成功之處:
1.本課在教學(xué)情境的設(shè)計上沒有采用課本上的主題圖,而是選取學(xué)生熟悉的買校服情境:這學(xué)期學(xué)校要換新校服。上衣每件28元,褲子每條12元。我們班共需繳校服費(fèi)多少元?學(xué)生獨立思考,同位交流,能用兩種方法解答出來,然后讓學(xué)生對比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(28+12)×44=28×44+12×44。
2.加深對乘法分配律意義的理解,讓學(xué)生不僅知道兩個數(shù)的和與一個數(shù)相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數(shù)的和的形式。通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的意義。
不足之處:
1.在總結(jié)乘法分配律時沒有把結(jié)構(gòu)說的很透徹,導(dǎo)致學(xué)生出現(xiàn)在練習(xí)時有一個同學(xué)在同步學(xué)習(xí)的練習(xí)題中把連乘算成乘法分配律。
2.學(xué)生的語言敘述不熟練,導(dǎo)致學(xué)生雖然會背用字母表示的式子,但是不會應(yīng)用。
《乘法分配律》教學(xué)反思 5
我對教材內(nèi)容、學(xué)情進(jìn)行了認(rèn)真的分析之后,確定了教學(xué)目標(biāo):通過小組合作探索乘法分配律的活動,進(jìn)一步體驗探索規(guī)律的過程,并能用字母表示;經(jīng)歷共同探索的過程,培養(yǎng)解決實際問題和數(shù)學(xué)交流的能力;會用乘法分配律進(jìn)行一些簡便計算。通過學(xué)生自主研究、小組討論、全班交流以及講學(xué)練相結(jié)合,設(shè)計相應(yīng)的練習(xí)題,逐步理解抽象的乘法分配律。
通過教研組全體老師的努力,我們設(shè)計了比較合理的前置性小研究。
在本節(jié)課的教學(xué)過程中,學(xué)生通過對“前置性小研究”的探索研究,能會用兩種方法去解決同一問題,并且能講出自己的思路;能夠觀察出并說出兩道算式的特點,能夠觀察出兩道算式的結(jié)果是相同的;能夠按照算式的特點進(jìn)行舉例;能夠自己說出規(guī)律,總結(jié)規(guī)律;能夠用求結(jié)果和乘法的意義去驗證這條規(guī)律的正確性、普遍性;能夠運(yùn)用乘法分配律解決實際的問題,在做題的同時感受乘法分配律給計算帶來的方便。
當(dāng)然,本節(jié)課的教育教學(xué)過程,也是有不足的地方。我認(rèn)為:
1、教師在施教的過程中,經(jīng)常性的打斷學(xué)生的發(fā)言。其實這是很不好的習(xí)慣。課下陳靖嫣對我說:“老師,你一打斷我,我就不知道怎么說了。”我自己也意識到了這個問題。我覺得在“生本課堂”中教師,應(yīng)該有這樣一種意識,那就是“等”的意識。等學(xué)生表達(dá)完他的所有想法之后,他們在遇到“瓶頸”的時候,老師可以經(jīng)過有智慧的引導(dǎo),幫助他們度過“難過”。可是我們很多時候,經(jīng)常犯的錯誤是,學(xué)生只要一有點小問題,老師馬上就出馬,這樣是極不好的做法。像本次課中,我有好幾次打斷了陳靖嫣同學(xué)的匯報,也打斷了王孟陽同學(xué)的匯報,還有好幾次打斷了同學(xué)們的交流活動。
對于這種打斷可能在心里帶著很僥幸的心理,認(rèn)為我必須在規(guī)定的時間完成某些教學(xué)任務(wù),不能讓本節(jié)課“節(jié)外生枝”。可是,這種心理違背了“生本課堂”的基本教學(xué)理念。
2、教師在引導(dǎo)的過程中,不能照顧到學(xué)生的想法。像:徐昊同學(xué)和李厚杰同學(xué)在課堂上,表達(dá)了自己的想法。可是我在施教的過程中,沒有給予足夠的重視。可能對于本節(jié)課的教學(xué),他們的想法,是在浪費(fèi)時間。可是,我的這種做法,卻不能照顧到他們的后續(xù)發(fā)展。我覺得在處理這個事件的時候,我應(yīng)該既不能讓本節(jié)課“跑偏”,也不能澆滅他們的“興趣之火”。這是需要有一定的教育智慧的。
3、我覺得學(xué)生們的交流是不夠熱烈的。根本的原因是:學(xué)生們的研究不夠到位,不會提出自己的疑問,不能對自己的疑問進(jìn)行探索研究。我覺得這都是老師在平時教學(xué)中,沒有給予足夠的指導(dǎo)的原因。
還有很多的問題,也許是我沒有意識到的。
結(jié)合本節(jié)課,關(guān)于生本課堂我有了很多的想法。
我認(rèn)為真正的“生本課堂”是這樣的:
教師在教學(xué)設(shè)計、教學(xué)過程等各個環(huán)節(jié),能體現(xiàn)學(xué)生的主體地位,從細(xì)節(jié)去體現(xiàn)。也是一種和諧的教育氛圍。教師和學(xué)生可以圍繞一個問題據(jù)理力爭,也可以在一節(jié)課中,實現(xiàn)多個知識點的“串聯(lián)”,也可能好幾節(jié)課我們突破不了一個知識點的講解。教師千萬要改變原先“計件工作”的模式,我們還原教育本來的色彩。它應(yīng)該是自然的,富有詩情畫意的。我們身在其中,師生應(yīng)該一起去營造一種氛圍,體會教育給我們帶來的幸和充實感。
我立志讓我的課堂,成為我們幸福的源泉。
《乘法分配律》教學(xué)反思 6
《乘法分配律》一直是四則運(yùn)算定律的一個難點,學(xué)生最容易出錯。比如38與99相乘,就容易出現(xiàn)“只把38與100相乘后再減1”的錯誤。還有的學(xué)生在計算125×48時,會出現(xiàn)“125×(6×8)=125×6+125×8“這樣的錯誤。究其原因,還是未能真正理解乘法的含義和乘法的運(yùn)算定律。
在教學(xué)中,我也想了很多辦法來解決這些問題,比如讓學(xué)生背乘法分配律的含義,經(jīng)常讓學(xué)生做點這樣的易錯題。可發(fā)現(xiàn)效果不是很明顯,尤其是有幾個孩子,一會就忘記了。后來,我想:還是必須從理解乘法的意義中去學(xué)會乘法分配律。于是,我就在輔導(dǎo)這幾名學(xué)生時,要求他們說出每一個算式表示的含義,再說一說自己做錯的算式的含義,從而在對比中來發(fā)現(xiàn)、理解自己的`錯誤,明白了自己錯誤的原因后,再來思考正確的解題思路,經(jīng)過幾次這樣的訓(xùn)練,效果好多了。
乘法分配律教學(xué)反思 7
乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。故而,對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達(dá)上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進(jìn)行觀察、比較和歸納,大膽提出自己的猜想并舉例進(jìn)行驗證……
1、關(guān)注學(xué)生已有的知識經(jīng)驗。
以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境――為參加“陽光伙伴”的32名運(yùn)動員購買統(tǒng)一服裝。通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗,使學(xué)生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究。
先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(35+25)×32=35×32+25×32這個等式,讓學(xué)生觀察,初步感知“乘法分配律”。再根據(jù)“老師還有其他選擇嗎”?這一問題,再次引出(35+25)×32=35×32+25×32,最后,要求學(xué)生照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。
3、教完之后,感覺在練習(xí)的設(shè)計上,還太拘禮與課本,雖然引導(dǎo)學(xué)生發(fā)現(xiàn)了定律,但沒有相配套的練習(xí)使學(xué)生對所學(xué)知識加以鞏固、應(yīng)用。對學(xué)生掌握知識的情況不能及時反饋,對如何用活、用好教材還需進(jìn)行進(jìn)一步的思考。
《乘法分配律》教學(xué)反思 8
乘法分配律是所有運(yùn)算律中形式變化較為復(fù)雜,且跨越加法和乘法兩級運(yùn)算的定律,對學(xué)生的記憶、理解與運(yùn)用都提出了較高的要求。教學(xué)中,教師需要在探析錯因、讀法糾正、變式訓(xùn)練上做足功夫,巧制策略。學(xué)生在正式接觸乘法分配律之前,學(xué)生陸續(xù)掌握了加法和乘法的交換律和結(jié)合律,并能熟練使用這些定律進(jìn)行簡單的。運(yùn)算。照常理推測,同為等式恒等變換,借助已有的經(jīng)驗,學(xué)生對于乘法分配律應(yīng)該很容易接受。然而,實際情況卻不容樂觀,學(xué)生在運(yùn)用乘法分配律進(jìn)行簡算時出錯率較高。為此,教師應(yīng)巧制策略,幫助學(xué)生克服困難。
如何幫學(xué)生建立數(shù)學(xué)模型,展現(xiàn)乘法分配律的性質(zhì),是教學(xué)的根本,也是學(xué)生理解的前提。要讓學(xué)生對乘法分配律有深刻準(zhǔn)確的記憶和理解,用最符合學(xué)生心理特征的方式進(jìn)行闡述才是上策。
為此,我改進(jìn)了教學(xué)方式——切換讀法,化難為易。
[例題]植樹節(jié)那天,學(xué)校組織二(1)班的學(xué)生植樹,上午植樹4小時,下午植樹2小時,平均每小時植樹25棵,問:植樹節(jié)那天,學(xué)生一共植樹多少棵?
步驟1:學(xué)生列式多為“25×4+25×2”和“25×(4+2)”兩種式子。
步驟2:簡述各算式的算理:25×4+25×2表示先分別求出半天的植樹數(shù),再求一天的植樹總數(shù);25×(4+2)表示先求植樹總時長,再求植樹總數(shù)。
步驟3:引導(dǎo)學(xué)生從數(shù)字計算的角度去理解:25×4+25×2表示兩個積的和,25×(4+2)表示兩個數(shù)的積。接著用一句話揭示它們的共同點:4個25加上2個25等于6個25,6就是4與2的和。以實例為對象,換成通俗的說法,完美呈現(xiàn)了算式的內(nèi)涵,深化了學(xué)生的理解。
步驟4:針對代數(shù)式表示的乘法分配律“a×c+b×c=(a+b)×c”,讓學(xué)生嘗試用通俗方式解讀,即a個c加上b個c等于(a+b)個c。
實踐證明,滲入思維的讀法比機(jī)械復(fù)讀教學(xué)效果要好。
乘法分配律課后教學(xué)反思 9
《乘法分配律》是本章的難點,它不是單一的乘法運(yùn)算,還涉及到加法運(yùn)算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。在設(shè)計本教案的過程中,我一直抱著“以學(xué)生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學(xué)習(xí)任務(wù)、參與共同的學(xué)習(xí)活動過程中實現(xiàn)不同的人的數(shù)學(xué)水平得到不同發(fā)展的教學(xué)方式。結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進(jìn)行以下幾點簡要分析:
一、教師要深入了解各層次學(xué)生思維實際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費(fèi)寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計算引入,有復(fù)習(xí)舊知,也有比一比誰的計算能力強(qiáng)開場。我想是不是可以拋開計算,帶著愉快的心情進(jìn)課堂,因此,我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點較低,學(xué)生比較容易接受。
二、讓學(xué)生根據(jù)自己的愛好,選擇自己喜歡的書,出來的算式就比較開放。學(xué)生能自由發(fā)揮,對所學(xué)內(nèi)容很感興趣,氣氛熱烈。由學(xué)生計算總價列式,到通過計算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上得到的結(jié)論,是來自于學(xué)生已有的數(shù)學(xué)知識水平的。
《乘法分配律》教學(xué)反思 10
乘法分配律是第三章的教學(xué)難點也是重點。這節(jié)課的設(shè)計。我是從學(xué)生的生活問題入手,利用與生活密切相關(guān)的情境圖植樹問題展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識。通過讓學(xué)生經(jīng)歷了 “ 觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納 ” 這樣一個知識形成的過程。回顧整個教學(xué)過程,這節(jié)課的亮點主要體現(xiàn)在以下幾個方面:
一、引入生活問題,激趣探究
在教學(xué)中,我為學(xué)生做好新知鋪墊,然后創(chuàng)設(shè)大量生動、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。首先我創(chuàng)設(shè)情景,提出問題: “ 一共有多少名學(xué)生參加這次植樹活動? ” 。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)( 4 + 2 ) ×25=4×25 + 2×25 這個等式。然后請學(xué)生觀察,這個等式兩邊的運(yùn)算順序,使學(xué)生初步感知 “ 乘法分配律 ” 。再讓學(xué)生 “ 觀察這個等式左右兩邊的不同之處 ” ,再次感知 “ 乘法分配律 ” 。同時利用情景,讓學(xué)生充分的感知 “ 乘法分配律 ” ,為后來 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供學(xué)生獨立探究的機(jī)會
我要求學(xué)生觀察得到的兩個等式,提出 “ 你有什么發(fā)現(xiàn)? ” 。此時學(xué)生對 “ 乘法分配律 ” 已有了自己的一點點感知,我馬上要求學(xué)生模仿等式,自己再寫幾個類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗證,形成比較 “ 模糊 ” 的認(rèn)識。
三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件
為了讓 “ 改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí) ” 不是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出 “ 觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎? ” 。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗證,辨析與交流的空間,把學(xué)習(xí)的主動權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
乘法分配律教學(xué)反思 11
記得曾經(jīng)在教孩子們乘法分配律的時候,總是遇到很多問題,對于乘法分配律的應(yīng)用不是很好,吐槽了很久,現(xiàn)在在教二年級的孩子的時候,我發(fā)現(xiàn)其實在二年級已經(jīng)接觸了這方面的知識,只是沒有進(jìn)行歸納而已。
二年級的課本上有這樣一種題型,如:(1)6x9=5x9+9=7x9—9=(2)9x4=9x3+9=
9x5—9=(3)8x9=7x9+9=9x9—9=先計算,你發(fā)現(xiàn)了什么?
我一看到這題,我就想到乘法分配律,但是在二年級剛接觸乘法,不可能就跟他們講乘法分配律。我在上練習(xí)課的時候我特意把這題拿出來講了,我想如果這里學(xué)生題解好了,對以后學(xué)習(xí)乘法分配律是有幫助的。在課堂上,我先讓學(xué)生自己完成,第一題的第2,3個算式,他們是按照運(yùn)算順序來計算的,先算乘法,再算加法或減法,這個沒有難度,而且他們根據(jù)第一題,后面的兩題都不要做,直接寫出了結(jié)果,每一題中的3個算式的結(jié)果是一樣的。我就問他們,為什么會出現(xiàn)這樣情況?學(xué)生就答不上來。我就舉了個示范,6x9是6個9相加,5x9+9是5個9相加再加1個9,5個9加1個9是6個9,6個9相加就是6x9,所以5x9+9=6x9=54。學(xué)習(xí)了乘法的意義,對于這個他們能理解,只是想不到而已,那么7x9—9=,可以交給孩子們完成,第(2)(3)題我也是讓學(xué)生來說一說。另外我還補(bǔ)充了一題,6x7—14,我發(fā)現(xiàn)竟然有孩子會想到14就是2個7,6個7減去2個7就是4個7,就是4x7=28。特別棒!
乘法分配律教學(xué)反思 12
《乘法分配律》是本章的難點,它不是單一的乘法運(yùn)算,還涉及到加法運(yùn)算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。通過觀察幾組數(shù)目不同的算式,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律,然后歸納、總結(jié),用語言表述出來。在教學(xué)時,我也是按照教學(xué)參考書的建議安排教學(xué)過程的。先復(fù)習(xí)乘法的交換律和結(jié)合律,接著導(dǎo)入新課。通過(18+7)×6○18×6+7×6、20×(15+90)○20×15+20×3,讓學(xué)生觀察、分析、思考、歸納,最后在教師的引導(dǎo)下總結(jié)出乘法分配律并加以運(yùn)用。
教學(xué)過程中,導(dǎo)課比較快,在歸納乘法分配律的內(nèi)容時,主觀上是時間緊張,可課后想想,實際上是引導(dǎo)不到位。課堂上學(xué)生氣氛不活躍,思維不積極,難以完整地總結(jié)出乘法分配律。結(jié)果,學(xué)生對乘法分配律不太理解,運(yùn)用時問題較多。如當(dāng)天在作業(yè)時出現(xiàn)的問題就比較多:45×103有三分之一的學(xué)生直接乘,不會簡便;尤其是計算59×21+21時,學(xué)生發(fā)現(xiàn)不了它的特點,不會運(yùn)用乘法分配律,可以說,本節(jié)課上得不是很成功。
今后的工作中,要多向以下幾個方面努力:
1.多聽課,多學(xué)習(xí)。尤其是青年教師的課,學(xué)習(xí)他們的新思想、新方法,改善課堂教學(xué),提高課堂教學(xué)藝術(shù)和課堂效率。
2.加強(qiáng)同同課教師之間的溝通和交流,相互學(xué)習(xí),取長補(bǔ)短,共同進(jìn)步。
3.認(rèn)真鉆研教材,把握好教材的重點、難點、關(guān)鍵點、易混點,上課時才能做到心中有數(shù),游刃有余。
《乘法分配律》教學(xué)反思 13
乘法分配律是教學(xué)的難點也是重點。這節(jié)課采用從生活中的問題入手,利用學(xué)生感興趣的具體情境展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識,將重視結(jié)論的記憶變?yōu)橹匾晫W(xué)生獲取結(jié)論的體驗和感悟,將模仿式的學(xué)習(xí)變?yōu)樘骄渴降膶W(xué)習(xí)。學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。這樣不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且更能培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。回顧整個教學(xué)過程,這節(jié)課的亮點體現(xiàn)在以下幾個方面:
一、從身邊引入熟悉的生活問題,激趣探究
我們在教學(xué)中要為學(xué)生創(chuàng)設(shè)大量生動、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。在教學(xué)時,我先創(chuàng)設(shè)情景,提出問題:“一共有多少名學(xué)生參加這次植樹活動?”。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學(xué)生觀察,這個等式兩邊的運(yùn)算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
二、為學(xué)生提供了自己獨立探究的機(jī)會
數(shù)學(xué)教學(xué)應(yīng)該是數(shù)學(xué)教學(xué)的活動。傳統(tǒng)的教學(xué)活動往往只重視結(jié)論的記憶,而這節(jié)課我把學(xué)生的活動定位在感悟和體驗上,引導(dǎo)學(xué)生用數(shù)學(xué)思維方式去發(fā)現(xiàn),去探索。尤其是在學(xué)生初步感悟到兩種算法相等關(guān)系的基礎(chǔ)上,繼續(xù)為學(xué)生創(chuàng)造一個思考的情景。我要求學(xué)生觀察得到的兩個等式,提出“你有什么發(fā)現(xiàn)?”。此時學(xué)生對“乘法分配律”已有了自己的一點點感知,我馬上要求學(xué)生模仿等式,自己再寫幾個類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗證,形成比較“模糊”的認(rèn)識。
三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件
模仿學(xué)習(xí),學(xué)生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應(yīng)用。改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí),不能是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗證,辨析與交流的空間,把學(xué)習(xí)的主動權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
乘法分配律教學(xué)反思 14
這節(jié)課是在學(xué)生學(xué)習(xí)乘法分配律基礎(chǔ)上進(jìn)行教學(xué)的。在第一課時學(xué)生對于乘法分配律的意義已經(jīng)有了初步的理解,對于乘法分配律的結(jié)構(gòu)也有了一定的認(rèn)識,能初步利用乘法分配律進(jìn)行簡便計算。本課內(nèi)容的教學(xué)重點是靈活根據(jù)題型應(yīng)用乘法分配律進(jìn)行簡便計算。
成功之處:
1、課始通過復(fù)習(xí)乘法分配律的意義,以及應(yīng)用乘法分配律進(jìn)行填空的練習(xí),讓學(xué)生進(jìn)一步熟悉乘法分配律的結(jié)構(gòu)及特點,加深對乘法分配律意義的理解。
2、分類型進(jìn)行練習(xí)。采用邊講邊練相結(jié)合的方法,讓學(xué)生通過專項練習(xí)進(jìn)一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);
第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數(shù)乘一個數(shù)。整體教學(xué)就是穩(wěn)扎穩(wěn)打,一步一個腳印,讓所有學(xué)生都能掌握其中的變式練習(xí),然后再進(jìn)行綜合訓(xùn)練,讓學(xué)生靈活解決問題。
不足之處:
1、由于分類型講解練習(xí),導(dǎo)致時間分配不足,個別題型沒有足夠的時間進(jìn)行練習(xí)。
2、學(xué)生的注意力集中不夠,導(dǎo)致個別學(xué)生對某一類型的題目沒有掌握。
再教設(shè)計:
1、加強(qiáng)小組合作的學(xué)習(xí),能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發(fā)揮小組組際間的交流,留給學(xué)生更多的時間和空間,發(fā)揮學(xué)生主體作用。
2、抓住易出錯類型題,重點講解,重點訓(xùn)練。
《乘法分配律》教學(xué)反思 15
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解與敘述的定律。如何教學(xué)能使學(xué)生較好的理解乘法分配律的內(nèi)涵,并能正確的運(yùn)用定律進(jìn)行簡便運(yùn)算呢?我做了一下幾點嘗試。
一、創(chuàng)設(shè)師生競賽,激發(fā)學(xué)習(xí)欲望。
上課教師先出示:(1)8×(125+11) (2)(100+1)×23
(3 )648×5+352×5
老師和同學(xué)們做一個比賽,王老師口算,你們用計算器算,看看誰能獲。
結(jié)果教師又快又對,學(xué)生都很奇怪,教師順勢導(dǎo)入:同學(xué)們都特別想知道在比賽過程中,學(xué)生用計算器都沒有老師口算得快的原因嗎?是因為老師又運(yùn)用了乘法的一個法寶,知道了乘法的又一個定律可以使運(yùn)算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。
這樣的導(dǎo)入讓學(xué)生充滿了求知的欲望,激發(fā)了學(xué)習(xí)的熱情。
二、設(shè)計思考問題,學(xué)生自主探究。
出示例題后,學(xué)生獨立解答,然后教師出示思考問題,學(xué)生自主探究。
討論:
1、這兩種方法有什么不同?兩個算式的`結(jié)果如何?用什么符號連接?
2、那么等號連接的這兩個算式有什么特點和聯(lián)系呢?請同學(xué)們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發(fā)現(xiàn)左邊括號外的那個數(shù),寫到右邊都要乘兩次。
生B:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。
整個教學(xué)過程通過學(xué)生觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。
三、練習(xí)有坡度,前后有呼應(yīng)。
在本課的練習(xí)設(shè)計上,我力求有針對性,有坡度,同時也注意知識的延伸。練習(xí)的形式多樣,課本上的填空題解決以后,設(shè)計了判斷題和練習(xí)題,把學(xué)生易出錯的問題提前預(yù)設(shè)好,而且通過練習(xí)讓學(xué)生明白乘法分配律也可以兩個數(shù)的差,也可以是三個數(shù)的和,使學(xué)生對乘法分配律的內(nèi)容得到進(jìn)一步完整,也為后面利用乘法分配律進(jìn)行簡算打下伏筆。為了讓學(xué)生初步感受乘法分配律能使一些計算簡便,我特意把開始和老師比賽的題目讓學(xué)生運(yùn)用今天所學(xué)知識進(jìn)行計算,學(xué)生非常有興趣,在練習(xí)中培養(yǎng)了學(xué)生分析、推理、概括的思維能力。
總之,在本堂課中新的教學(xué)理念有所體現(xiàn),是一節(jié)本色的數(shù)學(xué)課堂。但在具體的操作中還缺乏成熟的思考,自主探究環(huán)節(jié)對問題的設(shè)計不夠簡潔,還可以再做斟酌。實際分配律的揭示過程與教案設(shè)計順序有些出入,感覺效果沒有預(yù)想的好,上課時對于教案的熟悉程度還有待加強(qiáng)。
四年級乘法分配律教學(xué)反思 16
教材提供了這樣一個主體圖:春季里,同學(xué)們開展植樹活動,一共有25個小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學(xué)生會用兩種不同的方法分別列出算式,接著通過計算發(fā)現(xiàn),兩個算式可以用=連接,即25(4+2)=254+252,從而通過比較等號兩邊兩個算式的不同與相同,概括出乘法分配律。當(dāng)我在一個班按照此教學(xué)設(shè)計教學(xué)后,我發(fā)現(xiàn)效果并不理想,表現(xiàn)有兩點:
①有些學(xué)生只是機(jī)械的記憶了乘法分配律的公式,例如看到3544不能想到3540+354;
②由于沒有真正理解乘法分配律的內(nèi)涵,所以完全不能理解其逆應(yīng)用以及當(dāng)兩個數(shù)的差乘一個數(shù)時應(yīng)用乘法分配律。如:他們認(rèn)為6464+3664(64+36)64;265(105-5)=265105-2655。
針對此情況,我重新設(shè)計了教案。增加了一個問題:負(fù)責(zé)挖坑、種樹的同學(xué)比負(fù)責(zé)抬水、澆水的同學(xué)多多少人?這樣學(xué)生又列出另外兩個算式,通過計算后用等號連接:25(4-2)=254-252,接下來,我引導(dǎo)學(xué)生觀察、對比兩組算式,充分地去發(fā)現(xiàn)相同點與不同點。這樣一來,促使了學(xué)生去尋找事物之間的聯(lián)系,抓住本質(zhì),尋找共同點,促進(jìn)交流,順利地實現(xiàn)了自我構(gòu)建和知識創(chuàng)造。學(xué)生的發(fā)現(xiàn)自然也就更豐富、更有深度了:無論是兩個數(shù)的和還是兩個數(shù)的差去乘一位數(shù),都可以先把他們與這個數(shù)分別相乘,再相加或者再相減。此外,我還引導(dǎo)學(xué)生從右到左的觀察等式,嘗試用乘法的意義去理解乘法分配律,即:4個25加2個25就等于(4+2)個25,4個25減2個25就等于(4-2)個25,這樣幫助學(xué)生突破乘法分配律逆應(yīng)用這個教學(xué)難點。
我通過對兩個班不同的教學(xué)設(shè)計,感受到:認(rèn)真鉆研教材,多動心思,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。
乘法分配律教學(xué)反思 17
《乘法分配律》是一節(jié)比較抽象的概念課,是學(xué)生們學(xué)習(xí)了加法交換律和結(jié)合律,以及乘法的交換律和結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課的教學(xué)重點是乘法分配律的特點和應(yīng)用。開始導(dǎo)入我是利用小學(xué)教學(xué)熱身賽展開的教學(xué)。9×37+9×63和9×(37+63)。左右兩排學(xué)生做不同的題,讓學(xué)生認(rèn)識到這兩道題難易程度的不同,用的時間也是不同的,體現(xiàn)了用括號的必要性和簡便性,通過學(xué)生總結(jié)說特點引導(dǎo)他們猜想,然后對猜想進(jìn)行驗證,得出結(jié)論,并應(yīng)用到實際中,培養(yǎng)學(xué)生們學(xué)以致用的好習(xí)慣。
上周去濱州聽課,學(xué)到了“猜測—舉例驗證—總結(jié)—應(yīng)用”的教學(xué)模式,充分體現(xiàn)了新課標(biāo)的探究性學(xué)習(xí),并在本課教學(xué)中得到了很好的利用,不完全歸納法,也在本課中用所應(yīng)用。但是在引入時應(yīng)該讓學(xué)生們把這兩個算式的特點和聯(lián)系理解透徹了,學(xué)生們會很快的猜想出這條規(guī)律,整節(jié)課講速度有些慢,導(dǎo)致了幾個經(jīng)典的練習(xí)題沒有處理,創(chuàng)設(shè)情境激發(fā)學(xué)生的求知欲來導(dǎo)入新課,會收到更好的效果。
(80+4)×25=80×25+4×25此題的處理,我感到比較欣慰。當(dāng)發(fā)現(xiàn)學(xué)生們(80+4)×25=80×25+4時,我靈機(jī)一動在黑板上寫下了這個錯誤的算式,讓和我做的一樣的同學(xué)舉手,大約有5、6個同學(xué)高興地舉起手,還有一個同學(xué)得意地說“剛才我還以為做錯了呢?”看到這種情景我接著說:“不舉手的同學(xué)你們想說點什么嗎?”此句話給了這些沒有舉手的同學(xué)的信心,他們迫不及待地說出了正確的解法。這道題學(xué)生們非常容易做錯,這樣的處理會使學(xué)生加深印象,提高做題的準(zhǔn)確率。
《乘法分配律》教學(xué)反思 18
《乘法分配律》教學(xué)反思
乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運(yùn)算定律以及乘法交換律、乘法結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。在本單元運(yùn)算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律靈活地進(jìn)行簡便計算。
在課堂上,創(chuàng)設(shè)了植樹活動的情境,求一共有多少名同學(xué)參加了植樹活動。在課堂中,鼓勵學(xué)生獨立思考,能用兩種方法解答出來,然后讓學(xué)生對比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。
在學(xué)生理解了乘法分配律后,運(yùn)用變式練習(xí)加深對乘法分配律意義的理解,讓學(xué)生不僅知道兩個數(shù)的和與一個數(shù)相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數(shù)的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的意義。
通過學(xué)習(xí),一些學(xué)生已掌握,但也有一些學(xué)生的語言敘述不熟練,雖然會背用字母表示的式子,但是不會靈活應(yīng)用。還有一些學(xué)生容易把乘法分配律和乘法結(jié)合律弄混淆。
所以在復(fù)習(xí)鞏固時,要加強(qiáng)乘法結(jié)合律與乘法分配律的對比,讓學(xué)生對這兩個運(yùn)算定律的結(jié)構(gòu)更清晰。還要加強(qiáng)對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應(yīng)用運(yùn)算定律進(jìn)行簡便計算。
《乘法分配律》教學(xué)反思 19
①1355+5587=55(13+87)=5513+5587
②8(125+9)=8125+9
③(100-7)25=10025+725
④9947=(100-1)47=10047-1
⑤35201=35(201-1)
⑥79125=125(80-1)=12580+1251
⑦79125=125(80-1)=12580-1
⑧1252532=1258+425
⑨88125=808125
⑩24335=(245)33=10033
學(xué)生對于乘法分配律和結(jié)合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學(xué)中應(yīng)該注意什么呢?
1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵。
教學(xué)時我們往往注重等式兩邊的外形特點,即a(b+c)=ab+ac缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)3=23+73是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)3=23+73
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進(jìn)行對比練習(xí)。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律的特征是兩個數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)題中(40+4)25與(404)25這種題學(xué)生特別容易出錯。為了更好地掌握,可多進(jìn)行一些對比練習(xí),如進(jìn)行題組對比25(8+4)和2584;25125254和25125+258;每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律?應(yīng)用什么運(yùn)算定律可以使計算簡便?為什么要這樣算?
3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對乘法結(jié)合律和乘法分配律的理解
如:12588;10189你能有幾種方法?12588①豎式計算②125811③125(80+8)④(100+25)88等等。10189①豎式計算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等。對于不同解法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達(dá)到用簡便計算法進(jìn)行計算成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>
4、多練
針對題目多次練習(xí)。練習(xí)時注意練習(xí)量和時間的安排。剛開始可以天天練習(xí),過段時間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。
對于比較特殊的題目可以間斷性練習(xí),對優(yōu)生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。
只有在理解的基礎(chǔ)上反復(fù)練習(xí),才能使孩子對于乘法分配律牢固掌握,我將在反思過程中制定出切實可行的計劃,盡快使孩子消化吸收。
《乘法分配律》教學(xué)反思 20
《乘法分配律的運(yùn)用》教學(xué)設(shè)計及反思
教學(xué)目標(biāo)
(一)使學(xué)生學(xué)會用乘法分配律進(jìn)行簡算,提高計算能力.
(二)培養(yǎng)學(xué)生靈活運(yùn)用乘法運(yùn)算定律進(jìn)行計算的習(xí)慣.
教學(xué)重點和難點
能比較熟練地應(yīng)用運(yùn)算定律進(jìn)行簡算是教學(xué)的重點;反向應(yīng)用乘法分配律是學(xué)習(xí)的難點. 教學(xué)過程設(shè)計
(一)復(fù)習(xí)準(zhǔn)備
1.口算:
(二)學(xué)習(xí)新課
我們已經(jīng)學(xué)過乘法分配律,今天繼續(xù)研究怎樣應(yīng)用乘法分配律使計算簡便.(板書:乘法分配律的應(yīng)用)
1.創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)積極性.
出示102×( ).
請同學(xué)任意填上一個兩位數(shù),老師可以迅速說出它的得數(shù),而不用筆算.
2.教學(xué)例6:用簡便方法計算.
(1)計算102×43.
這是一道兩位數(shù)乘三位數(shù)的乘法,用筆算比較麻煩.想一想,能否把算式改成乘法分配律的形式,然后應(yīng)用運(yùn)算定律進(jìn)行簡算?
經(jīng)過討論后,可能出現(xiàn)兩種情況:一種是把原式改寫為(100+2)×43,然后按乘法分配律進(jìn)行計算;一種是把原式改寫成102×(40+3).不要簡單的否定,可以讓學(xué)生用兩種方法都做一
做,對比一下,找出哪種方法簡便.
在此基礎(chǔ)上引導(dǎo)學(xué)生觀察這類題目的特點,以及怎樣應(yīng)用乘法分配律,從而使學(xué)生明確:“兩個數(shù)相乘,把其中一個比較接近整十、整百、整千的數(shù)改寫成一個整十、整百、整千的數(shù)與一個數(shù)的和,再應(yīng)用乘法分配律可以使計算簡便.
(2)計算102×24.
訂正時說明怎樣簡算的?根據(jù)是什么.
(3)計算9×37+9×63.
啟發(fā)提問:
①這類題目的結(jié)構(gòu)形式是怎樣的?有什么特點?
②根據(jù)乘法分配律,可以把原式改寫成什么形式?這? 新理念還體現(xiàn)不夠,學(xué)生的積極性沒有充分調(diào)動起來。
《乘法分配律》教學(xué)反思 21
曾經(jīng)真的以為自己是一個很負(fù)責(zé)任的人:我愛我的學(xué)生,我愛我的數(shù)學(xué)教學(xué),甚至可以為了我的學(xué)生與數(shù)學(xué)教學(xué),放棄我個人的休息時間,為的只是我愛的學(xué)生能愛上我教的數(shù)學(xué),能把數(shù)學(xué)學(xué)得很出色。然而為什么總是事與愿違,成效“背叛”了設(shè)想,作業(yè)“背叛”了課堂?一切顯得那么捉襟見肘,“徒勞無功”成了我這學(xué)期最大的感受,到底問題出在哪里呢?當(dāng)我回想起教學(xué)中一點一滴的瑣事,老師們交流時的經(jīng)驗之談,再重新翻閱起一些理論書刊時,我似乎意識到自己其實早已經(jīng)“背叛”了數(shù)學(xué)教學(xué)。
“哦,簡單,簡單!”黃玄昶又樂滋滋地高高舉起他的手,果然不出我所料,他的回答又正中我的下懷,這不正是我所期望的答案嗎?說實話,開公開課我就喜歡像他這樣的學(xué)生,積極舉手發(fā)言,而且一步一步被我“引進(jìn)”來,突出所謂的教學(xué)重點,攻克預(yù)設(shè)的教學(xué)難點,最后解決相應(yīng)的問題,“看上去很美”,真的,經(jīng)過我的“引導(dǎo)”,他能“自主探索”,尋求規(guī)律,最后消除疑問,這不是一件看上去很“完美”的事嗎?
可是……“怎么又錯了!”我真是納悶,上課如此“高效”的人,怎么作業(yè)就這么慘不忍睹?題目稍一拐彎,就轉(zhuǎn)不過來了,曾經(jīng)我把他定論為思維的靈活性不夠,然而上完這堂《利用乘法分配律進(jìn)行簡便運(yùn)算》后,經(jīng)過反思與請教,我終于發(fā)現(xiàn)我錯了。
《乘法分配律》教學(xué)反思 22
乘法分配律是小學(xué)階段學(xué)生比較難理解與敘述的運(yùn)算定律,但的確又非常重要、運(yùn)用廣泛。在本節(jié)教學(xué)過程的設(shè)計上我采用了讓孩子通過“聯(lián)系實際、感知建模;分類整理,生成模型;發(fā)現(xiàn)規(guī)律,舉例驗證;表示規(guī)律,建構(gòu)模型;概括規(guī)律,完善模型;應(yīng)用規(guī)律,感受模型”的探索過程,完成本節(jié)的教學(xué)任務(wù)。
在教學(xué)過程中,以突破乘法分配律的教學(xué)重點和難點為切入點,對本節(jié)課知識的學(xué)習(xí)起到了舉足輕重的作用。根據(jù)自己的教學(xué)教訓(xùn),在平常的教學(xué)中,總是發(fā)現(xiàn)學(xué)生在學(xué)習(xí)完乘法分配律之后容易出現(xiàn)(a+b)×c=a×c+b的現(xiàn)象仔細(xì)研究其原因,其實是學(xué)生學(xué)的記的只是乘法分配律的外在形式,對公式只不過是表面膚淺的忘記,而沒有真正理解乘法分配律內(nèi)在的數(shù)學(xué)意義。因此,我就打破通過觀察 發(fā)現(xiàn) 猜想 驗證 概括的傳統(tǒng)教學(xué)思路,除了在外在形式上認(rèn)識規(guī)律(教材意圖),又從乘法的意義入手,使學(xué)生進(jìn)一步從算式意義方面得出了(a+b)×c=a×b+b×c這樣確鑿無疑的結(jié)論。讓學(xué)生對乘法分配律的理解不再只是停留在外在的“形”,而是又進(jìn)入“質(zhì)”的深化。這種教學(xué)建立在學(xué)生認(rèn)知規(guī)律的基礎(chǔ)之上,實現(xiàn)了有效的建立模型突破了本節(jié)的第一個難點。從課后作業(yè)可以看出,這種教學(xué)效果明顯好于以前。
在突破本節(jié)第二個難點:乘法分配律容易跟乘法結(jié)合律混淆的現(xiàn)象時。敢于挑戰(zhàn)自我,不再泛泛地講兩個規(guī)律的區(qū)別與聯(lián)系,而采用反式教學(xué)寫出25×(4×8)=25×4+25×8的現(xiàn)象,讓學(xué)生既懂得乘法結(jié)合律和分配律的區(qū)別,又找到了乘法分配律概念的重點。
在本節(jié)課的練習(xí)設(shè)計上,力求有針對性、有坡度的知識延伸,出示擴(kuò)展型的練習(xí),對分配律的概念加以升華。
這些方面,只是我對自己原來的教學(xué)在反思與對比中覺得是對我而言較為進(jìn)步的一點點。但是,在實際的課堂操作中,整個教學(xué)過程也出現(xiàn)了許多不盡人意的地方。
比如:課堂上由于緊強(qiáng)導(dǎo)致只顧自己思路,而忘了對學(xué)生的回答或知識的恰當(dāng)與否做出及時評定。還有,恐怕在規(guī)定時間內(nèi)完不成任務(wù),而把“總結(jié)”與“拓展”放錯了位置;學(xué)生參與的積極性沒有預(yù)想中那么高,可能與我相對缺乏激勵性語言有關(guān)等等問題。
深入思考,覺得還是自己的業(yè)務(wù)不夠熟練,駕馭課堂能力低下而造成的。因此,我想:今后要從以下幾方面努力:
一、深入鉆研,在挖掘教材上下功夫。
二、多聽課,學(xué)習(xí)別人長處,多查閱資料學(xué)習(xí),提高自己的業(yè)務(wù)水平。
最重要的是更新教學(xué)理念,在教學(xué)思路的“創(chuàng)新”上狠下功夫,讓學(xué)生看到的天天都是“新”老師,甚至忘記“傳統(tǒng)”形象,這是我最高的追求目標(biāo)。
《乘法分配律》教學(xué)反思 23
乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運(yùn)算定律,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運(yùn)算。從某種程度上來說,其抽象程度要高一些,因此,對學(xué)生而言,難度偏大,如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識要比灌輸?shù)脕淼挠浀酶巍?/p>
因此我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。在教學(xué)過程中有坡度的讓學(xué)生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設(shè)計:
一、讓學(xué)生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負(fù)責(zé)挖坑和種樹,4人負(fù)責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學(xué)生理解帶來的困難。
通過引入解決問題讓學(xué)生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進(jìn)行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會
借助對同一實際問題的不同解決方法讓學(xué)生體會乘法分配律的合理性。這是生活中遇到過的,學(xué)生能夠理解兩個算式表達(dá)的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學(xué)難點
讓學(xué)生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。
相對于乘法運(yùn)算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點。為了突破這個教學(xué)難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負(fù)責(zé),人負(fù)責(zé)。一共有多少同學(xué)參加這次植樹活動?
學(xué)生主動去設(shè)計、解決,調(diào)動學(xué)生的積極性。讓學(xué)生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
當(dāng)然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
乘法分配律教學(xué)反思 24
乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運(yùn)算定律以及乘法交換律、乘法結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。在本單元運(yùn)算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律靈活地進(jìn)行簡便計算。
在課堂上,創(chuàng)設(shè)了植樹活動的情境,求一共有多少名同學(xué)參加了植樹活動。在課堂中,鼓勵學(xué)生獨立思考,能用兩種方法解答出來,然后讓學(xué)生對比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。
在學(xué)生理解了乘法分配律后,運(yùn)用變式練習(xí)加深對乘法分配律意義的理解,讓學(xué)生不僅知道兩個數(shù)的。和與一個數(shù)相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數(shù)的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的意義。
通過學(xué)習(xí),一些學(xué)生已掌握,但也有一些學(xué)生的語言敘述不熟練,雖然會背用字母表示的式子,但是不會靈活應(yīng)用。還有一些學(xué)生容易把乘法分配律和乘法結(jié)合律弄混淆。
所以在復(fù)習(xí)鞏固時,要加強(qiáng)乘法結(jié)合律與乘法分配律的對比,讓學(xué)生對這兩個運(yùn)算定律的結(jié)構(gòu)更清晰。還要加強(qiáng)對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應(yīng)用運(yùn)算定律進(jìn)行簡便計算。
《乘法分配律》教學(xué)反思 25
《乘法分配律》是本章的難點,它不是單一的乘法運(yùn)算,還涉及到加法運(yùn)算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。在設(shè)計本教案的過程中,我一直抱著“以學(xué)生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學(xué)習(xí)任務(wù)、參與共同的學(xué)習(xí)活動過程中實現(xiàn)不同的人的數(shù)學(xué)水平得到不同發(fā)展的教學(xué)方式。結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進(jìn)行以下幾點簡要分析:
一、教師要深入了解各層次學(xué)生思維實際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費(fèi)寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計算引入,有復(fù)習(xí)舊知,也有比一比誰的計算能力強(qiáng)開場。我想是不是可以拋開計算,帶著愉快的心情進(jìn)課堂,因此,我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點較低,學(xué)生比較容易接受。
二、讓學(xué)生根據(jù)自己的愛好,選擇自己喜歡的方法列出來的算式就比較開放。學(xué)生能自由發(fā)揮,對所學(xué)內(nèi)容很感興趣,氣氛熱烈。到通過計算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上得到的結(jié)論,是來自于學(xué)生已有的數(shù)學(xué)知識水平的。
三、總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,老師都予以肯定和表揚(yáng),目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
四、在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。
在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運(yùn)用時問題較多等。
《乘法分配律》教學(xué)反思 26
乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學(xué)生理解。
一、抓住重點。讓學(xué)生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運(yùn)算律。這樣的安排,便于學(xué)生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學(xué)生在合作交流的過程中,對簡潔分配律的認(rèn)識由感性逐步上升到理性。教學(xué)用書上寫道:教學(xué)的重點和關(guān)鍵應(yīng)是引導(dǎo)學(xué)生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學(xué)時,我是按照如上的步驟進(jìn)行教學(xué)的。可是在我引導(dǎo)學(xué)生把算式寫成等式的時候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進(jìn)行聯(lián)系。根本沒有從數(shù)字上面去進(jìn)行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達(dá)這一規(guī)律。場面一時之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進(jìn)行表達(dá)。難道是坡度給得不夠嗎?還是平時的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。
總之,這個關(guān)鍵今天并沒有完成好。
二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。
在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學(xué)生對乘法分配律的意義的理解。我認(rèn)為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達(dá)時,我們班的同學(xué)也有了兩種的表達(dá)方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學(xué)生,乘法分配律的表示一般性采用的是這一條。
三、練習(xí)中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學(xué)生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時也是一樣。
今天教學(xué)了運(yùn)算律——乘法分配律,對于例題的解決,學(xué)生能列出不同的算式,45x5+65x5和(45+65)x5,通過各自的計算得出計算結(jié)果相同,然后把這兩條算式寫成等式45x5+65x5=(45+65)x5,學(xué)生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學(xué)生再仿寫了幾個算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學(xué)生把第3小題填錯,其實包括后面的練習(xí)中,把AxC+BxC改寫成(A+B)xC的正確率要比把(A+B)xC改寫成AxC+BxC的正確率高,可能還是學(xué)生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學(xué)會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。
想想做做第2題的第3小題74x(21+1)和74x21+74部分學(xué)生沒有發(fā)現(xiàn)它們是相等的,我讓認(rèn)為相等的學(xué)生表述理由,學(xué)生能把算式改寫成74x21+74x1再運(yùn)用乘法分配律變形成74x(21+1),學(xué)生理解后我補(bǔ)充77x99+77=□(□○□)讓學(xué)生填空,完成情況好多了,在拓展練習(xí)時補(bǔ)充了AxB+B=□(□○□)和AxB+B=□(□○□)讓學(xué)生進(jìn)一步真正理解乘法分配律的意義。但學(xué)生在完成想想做做第5題時,學(xué)生多習(xí)慣列式48x3+48x2來計算,卻不能靈活運(yùn)用所學(xué)知識列成(3+2)x48來計算,雖然運(yùn)用乘法分配律進(jìn)行簡便計算是下一課的學(xué)習(xí)內(nèi)容,但我也由此反思出我教學(xué)的不足之處,在例題教學(xué)時只關(guān)注了得出等式,卻忽略了讓學(xué)生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補(bǔ)上了這一點。
乘法分配律教學(xué)反思 27
關(guān)于乘法分配律早在上學(xué)期和本冊教材的前幾個單元的練習(xí)題中就有所滲透,雖然在當(dāng)時沒有揭示,但學(xué)生已經(jīng)從乘法的意義角度初步進(jìn)行了感知,以及初步體會了它可以使計算簡便。今天的教學(xué)就建立在這樣的基礎(chǔ)之上,上午第一節(jié)課我在自己班上,后來第二節(jié)課去聽了一根木頭老師的課,現(xiàn)在進(jìn)行對比,談一談自己的感受:
首先,值得向一根木頭老師學(xué)習(xí)的是,學(xué)生的預(yù)習(xí)工作很到位。課前,學(xué)生就已經(jīng)解決了“想想做做”第3、4題,學(xué)生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認(rèn)識提升了,從解決實際問題的角度進(jìn)一步感受了乘法分配律。而第4題通過計算比較,突現(xiàn)了乘法分配律可以使計算簡便,體現(xiàn)了應(yīng)用價值。我在課前沒有安排這樣的預(yù)習(xí),因此課上的時間比較倉促。
其次,我在學(xué)生解決完例題的問題后,還讓學(xué)生提了減法的問題,這樣做的目的是讓學(xué)生初步感受對于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴(kuò)展了學(xué)生的知識面,同時又為明天學(xué)習(xí)簡便運(yùn)算鋪墊。
最后,我覺得在指導(dǎo)學(xué)生在觀察比較65×5+45×5和(65+45)×5的聯(lián)系和區(qū)別時,可以指導(dǎo)學(xué)生從數(shù)和運(yùn)算符號兩個角度觀察,學(xué)生得出結(jié)論后,其實已經(jīng)感知到了算式的特點,然后讓學(xué)生用自己的方式創(chuàng)造相同類型的等式,可以是數(shù)、字母、圖形的等,值得欣慰的是學(xué)生能用各種方式正確表示出來,然后再揭示數(shù)學(xué)語言,學(xué)生的認(rèn)知產(chǎn)生飛躍。
不足的是,學(xué)生很難用自己的語言表達(dá)乘法分配律的含義,小組交流時,有些同寫還是充當(dāng)旁觀者的角色,有待于教師科學(xué)地引導(dǎo)。
《乘法分配律》教學(xué)反思 28
教學(xué)乘法分配律之后,發(fā)現(xiàn)學(xué)生的正確率很低,特別是對乘法結(jié)合律與乘法分配律極容易混淆。針對這種情況,我認(rèn)為在教學(xué)中應(yīng)該注意這些問題:
1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵。
教學(xué)中通過解決買水果濟(jì)青高速公路全長約多少千米?這一問題,結(jié)合具體的生活情景,得到了(110+90)2=1102+902這一結(jié)果。這時我們往往比較注意了等式兩邊的外形結(jié)構(gòu)特點,即兩數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。所以這里我們不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法的意義的角度理解,即左邊表示200個2,右邊也表示200個2,所以(110+90)2=1102+902
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進(jìn)行對比練習(xí)。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的。和乘一個數(shù)或兩個積的和。在練習(xí)中(40+4)25與(404)25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進(jìn)行一些對比練習(xí)。如:進(jìn)行題組對比15(84)和15(8+4);25125258和25125+258;練習(xí)中可以提問:每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律的特征?應(yīng)用運(yùn)算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學(xué)生進(jìn)行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對乘法結(jié)合律與乘法分配律的理解。
如:計算12588;10189你能用幾種方法?
12588 ①豎式計算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。
10189 ①豎式計算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。對不同的解題方法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進(jìn)行間算的條件是不一樣的。乘法分配律適用于連乘的算式,而乘法分配律一般針對有兩種運(yùn)算的算式。力爭達(dá)到用簡便算法進(jìn)行計算成為學(xué)生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>
4、多練,針對典型題目多次進(jìn)行練習(xí)。
練習(xí)時注意練習(xí)量和練習(xí)時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習(xí)一次,再到1周練習(xí)一次。典型題型可選擇(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。對于比較特殊的題目可間斷性練習(xí),對優(yōu)生提出掌握的要求。如3698+72;6825+68+6874,3212525等。