作為一位不辭辛勞的人民教師,通常需要用到教案來(lái)輔助教學(xué),借助教案可以更好地組織教學(xué)活動(dòng)。怎樣寫(xiě)教案才更能起到其作用呢?
高二數(shù)學(xué)教案 1
教學(xué)目標(biāo):
1、理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法。
2、掌握坐標(biāo)法解決幾何問(wèn)題的步驟;體會(huì)坐標(biāo)系的作用。
教學(xué)重點(diǎn):
體會(huì)直角坐標(biāo)系的作用。
教學(xué)難點(diǎn):
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題。
授課類(lèi)型:
新授課
教學(xué)模式:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)。
教 具:
多媒體、實(shí)物投影儀
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開(kāi)始,需要隨時(shí)測(cè)定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。
情境2:運(yùn)動(dòng)會(huì)的開(kāi)幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫(huà)布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫(huà)布所在的位置。
問(wèn)題1:如何刻畫(huà)一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動(dòng)
學(xué)生回顧
刻畫(huà)一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系
1、數(shù)軸 它使直線上任一點(diǎn)P都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿(mǎn)足:
任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1 選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
如何通過(guò)它們到點(diǎn)O的距離以及它們相對(duì)于點(diǎn)O的方位來(lái)刻畫(huà),即用”距離和方向”確定點(diǎn)的位置
例2 已知B村位于A村的正西方1公里處,原計(jì)劃經(jīng)過(guò)B村沿著北偏東60的方向設(shè)一條地下管線m.但在A村的西北方向400米出,發(fā)現(xiàn)一古代文物遺址W.根據(jù)初步勘探的結(jié)果,文物管理部門(mén)將遺址W周?chē)?00米范圍劃為禁區(qū)。試問(wèn):埋設(shè)地下管線m的計(jì)劃需要修改嗎?
變式訓(xùn)練
1一炮彈在某處爆炸,在A處聽(tīng)到爆炸的時(shí)間比在B處晚2s,已知A、B兩地相距800米,并且此時(shí)的聲速為340m/s,求曲線的方程
2在面積為1的中,,建立適當(dāng)?shù)淖鴺?biāo)系,求以M,N為焦點(diǎn)并過(guò)點(diǎn)P的橢圓方程
例3 已知Q(a,b),分別按下列條件求出P 的坐標(biāo)
(1)P是點(diǎn)Q 關(guān)于點(diǎn)M(m,n)的對(duì)稱(chēng)點(diǎn)
(2)P是點(diǎn)Q 關(guān)于直線l:x-y+4=0的對(duì)稱(chēng)點(diǎn)(Q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考
通過(guò)平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
五、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2、 利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問(wèn)題。
六、課后作業(yè):
高二數(shù)學(xué)教案 2
一、學(xué)習(xí)者特征分析
本節(jié)課內(nèi)容是面向高二下學(xué)期的學(xué)生,主要是進(jìn)行思維的訓(xùn)練。學(xué)生在高一的時(shí)候已經(jīng)學(xué)過(guò)這些數(shù)學(xué)思維方法,但是對(duì)這些知識(shí)還沒(méi)有進(jìn)行概念化的歸納和專(zhuān)門(mén)的訓(xùn)練。學(xué)生不知道分析法和綜合法的時(shí)候還是會(huì)用一點(diǎn),以以往的經(jīng)驗(yàn),學(xué)生一旦學(xué)習(xí)概念后,反而覺(jué)得難度大,概念混淆,因此,這一教學(xué)內(nèi)容的設(shè)計(jì)是針對(duì)學(xué)生的這一情況,設(shè)計(jì)專(zhuān)題學(xué)習(xí)網(wǎng)站,通過(guò)學(xué)生之間經(jīng)過(guò)學(xué)習(xí),交流,課后反復(fù)思考的,進(jìn)一步深化概念的過(guò)程,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。
二、教學(xué)目標(biāo)
知識(shí)與技能
1、 體會(huì)數(shù)學(xué)思維中的分析法和綜合法;
2、 會(huì)用分析法和綜合法去解決問(wèn)題。
過(guò)程與方法
1、 通過(guò)對(duì)分析法綜合法的學(xué)習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力;
2、 培養(yǎng)學(xué)生的數(shù)學(xué)閱讀和理解能力;
3、 培養(yǎng)學(xué)生的評(píng)價(jià)和反思能力。
情感態(tài)度與價(jià)值觀
1. 交流、分享運(yùn)用數(shù)學(xué)思維解決問(wèn)題的喜悅;
2. 提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;
3. 增強(qiáng)學(xué)習(xí)數(shù)學(xué)的信心。
三、教學(xué)內(nèi)容
本節(jié)課是數(shù)學(xué)思維訓(xùn)練專(zhuān)題課,專(zhuān)門(mén)訓(xùn)練學(xué)生利用分析法和綜合法解題。分析法在數(shù)學(xué)中特指從結(jié)果(結(jié)論)出發(fā)追溯其產(chǎn)生原因的思維方法,即執(zhí)果索因法。綜合思維方法:綜合是以已知性質(zhì)和分析為基礎(chǔ)的,從已知出發(fā)逐步推求位未知的思考方法,即執(zhí)果導(dǎo)因法。這兩種數(shù)學(xué)思維方法是數(shù)學(xué)思維方法中最基礎(chǔ)也是最重要的方法,是學(xué)生的思維訓(xùn)練的重要內(nèi)容。
四、教學(xué)策略的設(shè)計(jì)
1、 情境的設(shè)計(jì)
情境描述
情境簡(jiǎn)要描述
呈現(xiàn)方式
趣味問(wèn)題
從前有個(gè)國(guó)王在處死那些犯了罪的臣子的時(shí)候,總是出一些這樣那樣的智力題給犯人做,用這種方法給那些更聰明的人一條生路,有一位正直的青年叫亞瑟,不幸得罪了國(guó)王,國(guó)王判他死罪,他所面臨的問(wèn)題是:“這里有三個(gè)盒子,金盒,銀盒和鉛盒,免死金牌放在其中一個(gè)盒子內(nèi),每只盒子各寫(xiě)一句話,但其中只有一句是真的,你要是猜中了免死金牌在哪個(gè)盒子里,就免你一死罪。”聰明的亞瑟經(jīng)過(guò)推理而獲知免死金牌所放的盒子,從而救了自己的命,請(qǐng)問(wèn)亞瑟是如何推理的?
網(wǎng)頁(yè)
2、 教學(xué)資源的設(shè)計(jì)
資源類(lèi)型
資源內(nèi)容簡(jiǎn)要描述
資源來(lái)源
相關(guān)故事
通過(guò)有趣的推理故事,如“推理救命的故事”,“寶藏的故事,用于激發(fā)學(xué)生的學(xué)習(xí)興趣。
網(wǎng)上下載
學(xué)習(xí)網(wǎng)站
專(zhuān)題學(xué)習(xí)網(wǎng)站,嵌入了經(jīng)過(guò)修改適用于本課的論壇,在線測(cè)試等。
自行制作
3、 教學(xué)工具:計(jì)算機(jī)
4、 教學(xué)策略:自主探究學(xué)習(xí)策略,任務(wù)驅(qū)動(dòng)策略、反思策略
5、 教學(xué)環(huán)境:網(wǎng)絡(luò)教室
五、教學(xué)流程設(shè)計(jì)
1、創(chuàng)設(shè)情景,吸引學(xué)生注意
教師活動(dòng)
學(xué)生活動(dòng)
資源/工具
設(shè)計(jì)思想
提出“推理救命問(wèn)題”
積極思考,尋找方法
學(xué)習(xí)網(wǎng)站
以具有趣味性的故事入手,吸引學(xué)生的注意,點(diǎn)明本節(jié)課的目的。
2、自主探究,獲取知識(shí)
教師活動(dòng)
學(xué)生活動(dòng)
資源/工具
設(shè)計(jì)思想
1、初試牛刀:讓學(xué)生試做思維訓(xùn)練題。
2、挑戰(zhàn)高考題:在高考題中充分體現(xiàn)分析法,綜合法。
3、舉一反三:讓學(xué)生學(xué)會(huì)總結(jié)
學(xué)以致用:
4、把本節(jié)的方法應(yīng)用到解決數(shù)學(xué)問(wèn)題中。
積極思考,互相交流,發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。
學(xué)習(xí)網(wǎng)站
1、讓學(xué)生在輕松活潑的氛圍下帶著問(wèn)題,自主、積極地學(xué)習(xí),有助于培養(yǎng)學(xué)生的自我探索的能力。
2、超級(jí)鏈接控制性好,交互性強(qiáng),可讓學(xué)生在較短的時(shí)間內(nèi)收集積累更多的信息,拓寬學(xué)生的知識(shí)面。
3、培養(yǎng)學(xué)生收集信息、處理信息的能力。
3、總結(jié)概念,深化概念
教師活動(dòng)
學(xué)生活動(dòng)
資源/工具
設(shè)計(jì)思想
歸納本節(jié)的方法:分析法和綜合法。并指出:數(shù)學(xué)思維的訓(xùn)練不單只是一節(jié)簡(jiǎn)單的專(zhuān)題課,我們的同學(xué)在平常多留心身邊事物,多思考問(wèn)題,不斷提高數(shù)學(xué)思維能力。
體會(huì)分析法和綜合法的概念,并在論壇上發(fā)表自己對(duì)概念的理解。
學(xué)習(xí)網(wǎng)站論壇
通過(guò)對(duì)具體問(wèn)題的概念化,加深對(duì)概念的理解。
4、自主交流,知識(shí)遷移
教師活動(dòng)
學(xué)生活動(dòng)
資源/工具
設(shè)計(jì)思想
提出寶藏問(wèn)題并指導(dǎo)學(xué)生利用BBs論壇進(jìn)行討論
學(xué)生在論壇里充分地發(fā)表自己的看法
學(xué)習(xí)網(wǎng)站論壇
通過(guò)自主交流,增強(qiáng)分析問(wèn)題的能力和解決問(wèn)題的能力
5、在線測(cè)試,評(píng)價(jià)及反饋
教師活動(dòng)
學(xué)生活動(dòng)
資源/工具
設(shè)計(jì)思想
利用學(xué)習(xí)網(wǎng)站制作一些簡(jiǎn)單的訓(xùn)練題目
獨(dú)立完成在線的測(cè)試
學(xué)習(xí)網(wǎng)站
及時(shí)反饋課堂學(xué)習(xí)效果。
6、課后任務(wù)
教師活動(dòng)
學(xué)生活動(dòng)
資源/工具
設(shè)計(jì)思想
布置課后任務(wù):在網(wǎng)絡(luò)上收集推理分析的相關(guān)例子,在學(xué)習(xí)網(wǎng)站的論壇上討論。
記錄要求,并在課后完成。
網(wǎng)絡(luò)資源和學(xué)習(xí)網(wǎng)站
通過(guò)課后的任務(wù)訓(xùn)練,進(jìn)一步提高學(xué)生的數(shù)學(xué)思維能力,把思維訓(xùn)練延續(xù)到課堂外。
高二數(shù)學(xué)教案 3
一、教學(xué)目標(biāo)
【知識(shí)與技能】
能正確概述“二面角”、“二面角的平面角”的概念,會(huì)做二面角的平面角。
【過(guò)程與方法】
利用類(lèi)比的方法推理二面角的有關(guān)概念,提升知識(shí)遷移的能力。
【情感態(tài)度與價(jià)值觀】
營(yíng)造和諧、輕松的學(xué)習(xí)氛圍,通過(guò)學(xué)生之間,師生之間的交流、合作和評(píng)價(jià)達(dá)成共識(shí)、共享、共進(jìn),實(shí)現(xiàn)教學(xué)相長(zhǎng)和共同發(fā)展。
二、教學(xué)重、難點(diǎn)
【重點(diǎn)】
“二面角”和“二面角的平面角”的概念。
【難點(diǎn)】
“二面角的平面角”概念的形成過(guò)程。
三、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
請(qǐng)學(xué)生觀察生活中的一些模型,多媒體展示以下一系列動(dòng)畫(huà)如:
1.打開(kāi)書(shū)本的過(guò)程;
2.發(fā)射人造地球衛(wèi)星,要根據(jù)需要使衛(wèi)星的軌道平面與地球的赤道平面成一定的角度;
3.修筑水壩時(shí),為了使水壩堅(jiān)固耐久,須使水壩坡面與水平面成適當(dāng)?shù)慕嵌龋?/p>
引導(dǎo)學(xué)生說(shuō)出書(shū)本的兩個(gè)面、水壩面與底面,衛(wèi)星軌道面與地球赤道面均是呈一定的角度關(guān)系,引出課題。
(二)師生互動(dòng),探索新知
學(xué)生閱讀教材,同桌互相討論,教師引導(dǎo)學(xué)生對(duì)比平面角得出二面角的概念
平面角:平面角是從平面內(nèi)一點(diǎn)出發(fā)的兩條射線(半直線)所組成的圖形。
二面角定義:從一條直線出發(fā)的兩個(gè)半面所組成的圖形,叫作二面角。這條直線叫作二面角的棱,這兩個(gè)半平面叫作二面角的面。(動(dòng)畫(huà)演示)
(2)二面角的表示
(3)二面角的畫(huà)法
(PPT演示)
教師提問(wèn):一般地說(shuō),量角器只能測(cè)量“平面角”(指兩條相交直線所成的角。相應(yīng)地,我們把異面直線所成的角,直線與平面所成的角和二面角,均稱(chēng)為空間角)那么,如何去度量二面角的大小呢?我們以往是如何度量某些角的?教師引導(dǎo)學(xué)生將空間角化為平面角。
教師總結(jié):
(1)二面角的平面角的定義
定義:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
“二面角的平面角”的定義三個(gè)主要特征:點(diǎn)在棱上、線在面內(nèi)、與棱垂直(動(dòng)畫(huà)演示)
大小:二面角的大小可以用它的平面角的大小來(lái)表示。
平面角是直角的二面角叫做直二面角。
(2)二面角的平面角的作法
①點(diǎn)P在棱上—定義法
②點(diǎn)P在一個(gè)半平面上—三垂線定理法
③點(diǎn)P在二面角內(nèi)—垂面法
(三)生生互動(dòng),鞏固提高
(四)生生互動(dòng),鞏固提高
1.判斷下列命題的真假:
(1)兩個(gè)相交平面組成的圖形叫做二面角。( )
(2)角的兩邊分別在二面角的兩個(gè)面內(nèi),則這個(gè)角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
2.作出一下面PAC和面ABC的平面角。
(五)課堂小結(jié),布置作業(yè)
小結(jié):通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)到了什么?
作業(yè):以正方體為模型請(qǐng)找出一個(gè)所成角度為四十五度的二面角,并證明。
高二數(shù)學(xué)教案 4
一、教學(xué)目標(biāo)
【知識(shí)與技能】
能正確概述“二面角”、“二面角的平面角”的概念,會(huì)做二面角的平面角。
【過(guò)程與方法】
利用類(lèi)比的方法推理二面角的有關(guān)概念,提升知識(shí)遷移的能力。
【情感態(tài)度與價(jià)值觀】
營(yíng)造和諧、輕松的學(xué)習(xí)氛圍,通過(guò)學(xué)生之間,師生之間的交流、合作和評(píng)價(jià)達(dá)成共識(shí)、共享、共進(jìn),實(shí)現(xiàn)教學(xué)相長(zhǎng)和共同發(fā)展。
二、教學(xué)重、難點(diǎn)
【重點(diǎn)】
“二面角”和“二面角的平面角”的概念。
【難點(diǎn)】
“二面角的平面角”概念的形成過(guò)程。
三、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
請(qǐng)學(xué)生觀察生活中的一些模型,多媒體展示以下一系列動(dòng)畫(huà)如:
1、打開(kāi)書(shū)本的過(guò)程;
2、發(fā)射人造地球衛(wèi)星,要根據(jù)需要使衛(wèi)星的軌道平面與地球的赤道平面成一定的角度;
3、修筑水壩時(shí),為了使水壩堅(jiān)固耐久,須使水壩坡面與水平面成適當(dāng)?shù)慕嵌龋?/p>
引導(dǎo)學(xué)生說(shuō)出書(shū)本的兩個(gè)面、水壩面與底面,衛(wèi)星軌道面與地球赤道面均是呈一定的角度關(guān)系,引出課題。
(二)師生互動(dòng),探索新知
學(xué)生閱讀教材,同桌互相討論,教師引導(dǎo)學(xué)生對(duì)比平面角得出二面角的概念
平面角:平面角是從平面內(nèi)一點(diǎn)出發(fā)的兩條射線(半直線)所組成的圖形。
二面角定義:從一條直線出發(fā)的兩個(gè)半面所組成的圖形,叫作二面角。這條直線叫作二面角的棱,這兩個(gè)半平面叫作二面角的面。(動(dòng)畫(huà)演示)
(2)二面角的表示
(3)二面角的畫(huà)法
(PPT演示)
教師提問(wèn):一般地說(shuō),量角器只能測(cè)量“平面角”(指兩條相交直線所成的角。相應(yīng)地,我們把異面直線所成的角,直線與平面所成的角和二面角,均稱(chēng)為空間角)那么,如何去度量二面角的大小呢?我們以往是如何度量某些角的?教師引導(dǎo)學(xué)生將空間角化為平面角。
教師總結(jié):
(1)二面角的平面角的定義
定義:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
“二面角的平面角”的定義三個(gè)主要特征:點(diǎn)在棱上、線在面內(nèi)、與棱垂直(動(dòng)畫(huà)演示)
大小:二面角的大小可以用它的平面角的大小來(lái)表示。
平面角是直角的二面角叫做直二面角。
(2)二面角的平面角的作法
①點(diǎn)P在棱上—定義法
②點(diǎn)P在一個(gè)半平面上—三垂線定理法
③點(diǎn)P在二面角內(nèi)—垂面法
(三)生生互動(dòng),鞏固提高
(四)生生互動(dòng),鞏固提高
1、判斷下列命題的真假:
(1)兩個(gè)相交平面組成的圖形叫做二面角。( )
(2)角的兩邊分別在二面角的兩個(gè)面內(nèi),則這個(gè)角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
2、作出一下面PAC和面ABC的平面角。
(五)課堂小結(jié),布置作業(yè)
小結(jié):通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)到了什么?
作業(yè):以正方體為模型請(qǐng)找出一個(gè)所成角度為四十五度的二面角,并證明。
高二數(shù)學(xué)優(yōu)秀教案 5
一、教學(xué)目標(biāo)
【知識(shí)與技能】
掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【過(guò)程與方法】
經(jīng)歷三角函數(shù)的單調(diào)性的探索過(guò)程,提升邏輯推理能力。
【情感態(tài)度價(jià)值觀】
在猜想計(jì)算的過(guò)程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【教學(xué)難點(diǎn)】
探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過(guò)程。
三、教學(xué)過(guò)程
引入新課
提出問(wèn)題:如何研究三角函數(shù)的單調(diào)性
小結(jié)作業(yè)
提問(wèn):今天學(xué)習(xí)了什么?
引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過(guò)程。
課后作業(yè):
思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。
高二數(shù)學(xué)教案 6
簡(jiǎn)單的邏輯聯(lián)結(jié)詞
(一)教學(xué)目標(biāo)
1、知識(shí)與技能目標(biāo):
(1) 掌握邏輯聯(lián)結(jié)詞且的含義
(2) 正確應(yīng)用邏輯聯(lián)結(jié)詞且解決問(wèn)題
(3) 掌握真值表并會(huì)應(yīng)用真值表解決問(wèn)題
2、過(guò)程與方法目標(biāo):
在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維的嚴(yán)密性品質(zhì)的培養(yǎng)。
3、情感態(tài)度價(jià)值觀目標(biāo):
激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神。
(二)教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):通過(guò)數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞且的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。
難點(diǎn):
1、正確理解命題Pq真假的規(guī)定和判定。
2、簡(jiǎn)潔、準(zhǔn)確地表述命題Pq.
教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。
教學(xué)設(shè)想:在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維的嚴(yán)密性品質(zhì)的培養(yǎng)。
(三)教學(xué)過(guò)程
學(xué)生探究過(guò)程:
1、引入
在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯。具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面。數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的數(shù)學(xué)比初中更強(qiáng)調(diào)邏輯性。如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤。其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí)。
在數(shù)學(xué)中,有時(shí)會(huì)使用一些聯(lián)結(jié)詞,如且或非。在生活用語(yǔ)中,我們也使用這些聯(lián)結(jié)詞,但表達(dá)的含義和用法與數(shù)學(xué)中的含義和用法不盡相同。下面介紹數(shù)學(xué)中使用聯(lián)結(jié)詞且或非聯(lián)結(jié)命題時(shí)的含義和用法。
為敘述簡(jiǎn)便,今后常用小寫(xiě)字母p,q,r,s,表示命題。(注意與上節(jié)學(xué)習(xí)命題的條件p與結(jié)論q的區(qū)別)
2、思考、分析
問(wèn)題1:下列各組命題中,三個(gè)命題間有什么關(guān)系?
①12能被3整除;
②12能被4整除;
③12能被3整除且能被4整除。
學(xué)生很容易看到,在第(1)組命題中,命題③是由命題①②使用聯(lián)結(jié)詞且聯(lián)結(jié)得到的新命題。
問(wèn)題2:以前我們有沒(méi)有學(xué)習(xí)過(guò)象這樣用聯(lián)結(jié)詞且聯(lián)結(jié)的命題呢?你能否舉一些例子?
例如:命題p:菱形的對(duì)角線相等且菱形的對(duì)角線互相平分。
3、歸納定義
一般地,用聯(lián)結(jié)詞且把命題p和命題q聯(lián)結(jié)起來(lái),就得到一個(gè)新命題,記作pq,讀作p且q。
命題pq即命題p且q中的且字與下面命題中的且 字的含義相同嗎?
若 xA且xB,則xB。
定義中的且字與命題中的且 字的含義是類(lèi)似。但這里的邏輯聯(lián)結(jié)詞且與日常語(yǔ)言中的和,并且,以及,既又等相當(dāng),表明前后兩者同時(shí)兼有,同時(shí)滿(mǎn)足。說(shuō)明:符號(hào)與開(kāi)口都是向下。
注意:p且q命題中的p、q是兩個(gè)命題,而原命題,逆命題,否命題,逆否命題中的p,q是一個(gè)命題的條件和結(jié)論兩個(gè)部分。
4、命題pq的真假的規(guī)定
你能確定命題pq的真假嗎?命題pq和命題p,q的真假之間有什么聯(lián)系?
引導(dǎo)學(xué)生分析前面所舉例子中命題p,q以及命題pq的真假性,概括出這三個(gè)命題的真假之間的關(guān)系的一般規(guī)律。
例如:在上面的例子中,第(1)組命題中,①②都是真命題,所以命題③是真命題。
一般地,我們規(guī)定:
當(dāng)p,q都是真命題時(shí),pq是真命題;當(dāng)p,q兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是假命題。
5、例題
例1:將下列命題用且聯(lián)結(jié)成新命題pq的形式,并判斷它們的真假。
(1)p:平行四邊形的對(duì)角線互相平分,q:平行四邊形的對(duì)角線相等。
(2)p:菱形的對(duì)角線互相垂直,q:菱形的對(duì)角線互相平分;
(3)p:35是15的倍數(shù),q:35是7的倍數(shù)。
解:(1)pq:平行四邊形的對(duì)角線互相平分且平行四邊形的對(duì)角線相等。也可簡(jiǎn)寫(xiě)成平行四邊形的對(duì)角線互相平分且相等。
由于p是真命題,且q也是真命題,所以pq是真命題。
(2)pq:菱形的對(duì)角線互相垂直且菱形的對(duì)角線互相平分。 也可簡(jiǎn)寫(xiě)成菱形的對(duì)角線互相垂直且平分。
由于p是真命題,且q也是真命題,所以pq是真命題。
(3)pq:35是15的倍數(shù)且35是7的倍數(shù)。 也可簡(jiǎn)寫(xiě)成35是15的倍數(shù)且是7的倍數(shù)。
由于p是假命題, q是真命題,所以pq是假命題。
說(shuō)明,在用且聯(lián)結(jié)新命題時(shí),如果簡(jiǎn)寫(xiě),應(yīng)注意保持命題的意思不變。
例2:用邏輯聯(lián)結(jié)詞且改寫(xiě)下列命題,并判斷它們的真假。
(1)1既是奇數(shù),又是素?cái)?shù);
(2)2是素?cái)?shù)且3是素?cái)?shù);
6.鞏固練習(xí) :P20 練習(xí)第1 , 2題
7.教學(xué)反思:
(1)掌握邏輯聯(lián)結(jié)詞且的含義
(2)正確應(yīng)用邏輯聯(lián)結(jié)詞且解決問(wèn)題
高二數(shù)學(xué)優(yōu)秀教案 7
教學(xué)要求:理解曲線交點(diǎn)與方程組的解的關(guān)系,掌握直線與曲線位置關(guān)系的討論,能熟練地求曲線交點(diǎn)。
教學(xué)重點(diǎn):熟練地求交點(diǎn)。
教學(xué)過(guò)程:
一、復(fù)習(xí)準(zhǔn)備:
1、直線A x+B +C =0與直線A x+B +C =0,
平行的充要條件是 ,相交的充要條件是 ;
重合的充要條件是 ,垂直的充要條件是 。
2、知識(shí)回顧:充分條件、必要條件、充要條件。
二、講授新課:
1、教學(xué)例題:
①出示例:求直線=x+1截曲線= x 所得線段的中點(diǎn)坐標(biāo)。
②由學(xué)生分析求解的思路→學(xué)生練→老師評(píng)講
(聯(lián)立方程組→消用韋達(dá)定理求x坐標(biāo)→用直線方程求坐標(biāo))
③試求→訂正→小結(jié)思路。→變題:求弦長(zhǎng)
④出示例:當(dāng)b為何值時(shí),直線=x+b與曲線x + =4 分別 相交?相切? 相離?
⑤分析:三種位置關(guān)系與兩曲線的交點(diǎn)情況有何關(guān)系?
⑥學(xué)生試求→訂正→小結(jié)思路。
⑦討論其它解法?
解二:用圓心到直線的距離求解;
解三:用數(shù)形結(jié)合法進(jìn)行分析。
⑧討論:兩條曲線F (x,)=0與F (x,)=0相交的充要條件是什么?
如何判別直線Ax+B+C=0與曲線F(x,)=0的位置關(guān)系?
( 聯(lián)立方程組后,一解時(shí):相切或相交; 二解時(shí):相交; 無(wú)解時(shí):相離)
2、練習(xí):
求過(guò)點(diǎn)(-2,- )且與拋物線= x 相切的直線方程。
三、鞏固練習(xí):
1、若兩直線x+=3a,x-=a的交點(diǎn)在圓x + =5上,求a的值。
(答案:a=±1)
2、求直線=2x+3被曲線=x 截得的線段長(zhǎng)。
3、課堂作業(yè):書(shū)P72 3、4、10題。
高二數(shù)學(xué)教案 8
教學(xué)目標(biāo)
1.使學(xué)生理解圓的旋轉(zhuǎn)不變性,理解圓心角、弦心距的概念;
2.使學(xué)生掌握?qǐng)A心角、弧、弦、弦心距之間的相等關(guān)系定理及推論,并初步學(xué)會(huì)運(yùn)用這些關(guān)系解決有關(guān)問(wèn)題;
3.培養(yǎng)學(xué)生觀察、分析、歸納的能力,向?qū)W生滲透旋轉(zhuǎn)變換的思想及由特殊到一般的認(rèn)識(shí)規(guī)律.
教學(xué)重點(diǎn)和難點(diǎn)
圓心角、弧、弦、弦心距之間的相等關(guān)系是重點(diǎn);從圓的旋轉(zhuǎn)不變性出發(fā),推出圓心角、弧、弦、弦心距之間的相等關(guān)系是難點(diǎn).
教學(xué)過(guò)程設(shè)計(jì)
一、創(chuàng)設(shè)情景,引入新課
圓是軸對(duì)稱(chēng)圖形.圓的這一性質(zhì),幫助我們解決了圓的許多問(wèn)題.今天我們?cè)賮?lái)一起研究一下圓還有哪些特性.
1.動(dòng)態(tài)演示,發(fā)現(xiàn)規(guī)律
投影出示圖7-47,并動(dòng)態(tài)顯示:平行四邊形繞對(duì)角線交點(diǎn)O旋轉(zhuǎn)180°后.問(wèn):
(1)結(jié)果怎樣?
學(xué)生答:和原來(lái)的平行四邊形重合.
(2)這樣的圖形叫做什么圖形?
學(xué)生答:中心對(duì)稱(chēng)圖形.
投影出示圖7-48,并動(dòng)態(tài)顯示:⊙O繞圓心O旋轉(zhuǎn)180°.由學(xué)生觀察后,歸納出:圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形.
投影繼續(xù)演示如圖7-49,讓直徑AB兩個(gè)端點(diǎn)A,B繞圓心旋轉(zhuǎn)30°,45°,
90°,讓學(xué)生觀察發(fā)現(xiàn)什么結(jié)論?
得出:不論繞圓心旋轉(zhuǎn)多少度,都能夠和原來(lái)的圖形重合.
進(jìn)一步演示,讓圓繞著圓心旋轉(zhuǎn)任意角度α,你發(fā)現(xiàn)什么?
學(xué)生答:仍然與原來(lái)的圖形重合.
于是由學(xué)生歸納總結(jié),得出圓所特有的性質(zhì):圓的旋轉(zhuǎn)不變性.即圓繞圓心旋轉(zhuǎn)任意一個(gè)角度α,都能夠與原來(lái)的圖形重合.
2.圓心角,弦心距的概念.
我們?cè)谘芯繄A的旋轉(zhuǎn)不變性時(shí),⊙O繞圓心O旋轉(zhuǎn)任意角度α后,出現(xiàn)一個(gè)角
∠AOB,請(qǐng)同學(xué)們觀察一下,這個(gè)角有什么特點(diǎn)?如圖7-50.(如有條件可電腦閃動(dòng)顯示圖形.)
在學(xué)生觀察的基礎(chǔ)上,由學(xué)生說(shuō)出這個(gè)角的特點(diǎn):頂點(diǎn)在圓心上.
在此基礎(chǔ)上,教師給出圓心角的定義,并板書(shū).
頂點(diǎn)在圓心的角叫做圓心角.
再進(jìn)一步觀察,AB是∠AOB所對(duì)的弧,連結(jié)AB,弦AB既是圓心角∠AOB也是AB所對(duì)的弦.請(qǐng)同學(xué)們回憶,在學(xué)習(xí)垂徑定理時(shí),常作的一條輔助線是什么?
學(xué)生答:過(guò)圓心O作弦AB的垂線.
在學(xué)生回答的基礎(chǔ)上,教師指出:點(diǎn)O到AB的垂直線段OM的長(zhǎng)度,即圓心到弦的'距離叫做弦心距.如圖7-51.(教師板書(shū)定義)最后指出:這節(jié)課我們就來(lái)研究圓心角之間,以及它們所對(duì)的弧、弦、弦的弦心距之間的關(guān)系.(引出課題)
二、大膽猜想,發(fā)現(xiàn)定理
在圖7-52中,再畫(huà)一圓心角∠A′OB′,如果∠AOB=∠A′OB′,(變化顯示兩角相等)再作出它們所對(duì)的弦AB,A′B′和弦的弦心距OM,OM′,請(qǐng)大家大膽猜想,其余三組量與,弦AB與A′B′,弦心距OM與OM′的大小關(guān)系如何?
學(xué)生很容易猜出:=,AB=A′B′,OM=OM′.
教師進(jìn)一步提問(wèn):同學(xué)們剛才的發(fā)現(xiàn)僅僅是感性認(rèn)識(shí),猜想是否正確,必須進(jìn)行證明,怎樣證明呢?
學(xué)生最容易想到的是證全等的方法,但得不到=,怎樣證明弧相等呢?
讓學(xué)生思考并啟發(fā)學(xué)生回憶等弧的定義是什么?
學(xué)生:在同圓或等圓中,能夠完全重合的弧叫等弧.
請(qǐng)同學(xué)們想一想,你用什么方法讓和重合呢?
學(xué)生:旋轉(zhuǎn).
下面我們就來(lái)嘗試?yán)眯D(zhuǎn)變換的思想證明=.
把∠AOB連同旋轉(zhuǎn),使OA與OA′重合,電腦開(kāi)始顯示旋轉(zhuǎn)過(guò)程.教師邊演示邊提問(wèn).
我們發(fā)現(xiàn)射線OB與射線OB′也會(huì)重合,為什么?
學(xué)生:因?yàn)椤螦OB=∠A′OB′,
所以射線OB與射線OB′重合.
要證明與重合,關(guān)鍵在于點(diǎn)A與點(diǎn)A′,點(diǎn)B與點(diǎn)B′是否分別重合.這兩對(duì)點(diǎn)分別重合嗎?
學(xué)生:重合.
你能說(shuō)明理由嗎?
學(xué)生:因?yàn)镺A=OA′,OB=OB′,
所以點(diǎn)A與點(diǎn)A′重合,點(diǎn)B與點(diǎn)B′重合.
當(dāng)兩段孤的兩個(gè)端點(diǎn)重合后,我們可以得到哪些量重合呢?
學(xué)生:與重合,弦AB與A′B′重合,OM與OM′重合.
為什么OM也與OM′重合呢?
學(xué)生:根據(jù)垂線的唯一性.
于是有結(jié)論:=,AB=A′B′,OM=OM′.
以上證明運(yùn)用了圓的旋轉(zhuǎn)不變性.得到結(jié)論后,教師板書(shū)證明過(guò)程,并引導(dǎo)學(xué)生用簡(jiǎn)潔的文字?jǐn)⑹鲞@個(gè)真命題.
教師板書(shū)定理.
定理:在同圓____中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等.
教師引導(dǎo)學(xué)生補(bǔ)全定理內(nèi)容.
投影顯示如圖7-53,⊙O與⊙O′為等圓,∠AOB=∠A′O′B′,OM與
O′M′分別為AB與A′B′的弦心距,請(qǐng)學(xué)生回答與.AB與A′B′,OM與O′M′還相等嗎?為什么?
在學(xué)生回答的基礎(chǔ)上,教師指出:以上三組量仍然相等,因?yàn)閮蓚€(gè)等圓可以疊合成同圓.(投影顯示疊合過(guò)程)
這樣通過(guò)疊合,把等圓轉(zhuǎn)化成了同圓,教師把定理補(bǔ)充完整.
然后,請(qǐng)同學(xué)們思考定理的條件和結(jié)論分別是什么?并回答:
定理是在同圓或等圓這個(gè)大前提下,已知圓心角相等,得出其余三組量相等.請(qǐng)同學(xué)們思考,在這個(gè)大前提下,把圓心角相等與三個(gè)結(jié)論中的任何一個(gè)交換位置,可以得到三個(gè)新命題,這三個(gè)命題是真命題嗎?如何證明?
在學(xué)生討論的基礎(chǔ)上,簡(jiǎn)單地說(shuō)明證明方法.
最后,教師把這四個(gè)真命題概括起來(lái),得到定理的推論.
請(qǐng)學(xué)生歸納,教師板書(shū).
推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等.
三、鞏固應(yīng)用、變式練習(xí)
例1判斷題,下列說(shuō)法正確嗎?為什么?
(1)如圖7-54:因?yàn)椤螦OB=∠A′OB′,所以AB=.
(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么=.
分析:(1)、(2)都是不對(duì)的.在圖7-54中,因?yàn)楹筒辉谕瑘A或等圓中,不能用定理.對(duì)于(2)也缺少了等圓的條件.可讓學(xué)生舉反例說(shuō)明.
例2如圖7-55,點(diǎn)P在⊙O上,點(diǎn)O在∠EPF的角平分線上,∠EPF的兩邊交⊙O于點(diǎn)A和B.求證:PA=PB.
讓學(xué)生先思考,再敘述思路,教師板書(shū)示范.
證明:作OM⊥PA,ON⊥PB,垂足為M,N.
把P點(diǎn)當(dāng)做運(yùn)動(dòng)的點(diǎn),將例2演變?nèi)缦拢?/p>
變式1(投影打出)
已知:如圖7-56,點(diǎn)O在∠EPF的平分線上,⊙O和∠EPF的兩邊分別交于點(diǎn)A,B和C,D.
求證:AB=CD.
師生共同分析之后,由學(xué)生口述證明過(guò)程.
變式2(投影打出)
已知:如圖7-57,⊙O的弦AB,CD相交于點(diǎn)P,∠APO=∠CPO,
求證:AB=CD.
由學(xué)生口述證題思路.
說(shuō)明:這組例題均是利用弦心距相等來(lái)證明弦相等的問(wèn)題,當(dāng)然,也可利用其它方法來(lái)證,只不過(guò)前者較為簡(jiǎn)便.
練習(xí)1已知:如圖7-58,AD=BC.
求證:AB=CD.
師生共同分析后,學(xué)生練習(xí),一學(xué)生上黑板板演.
變式練習(xí).已知:如圖7-58,=,求證:AB=CD.
四、師生共同小結(jié)
教師提問(wèn):
(1)這節(jié)課學(xué)習(xí)了哪些具體內(nèi)容?
(2)本節(jié)的定理和推論是用什么方法證明的?
(3)應(yīng)注意哪些問(wèn)題?
在學(xué)生回答的基礎(chǔ)上,教師總結(jié).
(1)這節(jié)課主要學(xué)習(xí)了兩部分內(nèi)容:一是證明了圓是中心對(duì)稱(chēng)圖形.得到圓的特性圓的旋轉(zhuǎn)不變性;二是學(xué)習(xí)了在同圓或等圓中,圓心角、圓心角所對(duì)的弧、所對(duì)的弦、所對(duì)的弦的弦心距之間的關(guān)系定理及推論.這些內(nèi)容是我們今后證明弧相等、弦相等、角相等的重要依據(jù).
(2)本節(jié)通過(guò)觀察猜想論證的方法,從運(yùn)動(dòng)變化中發(fā)現(xiàn)規(guī)律,得出定理及推論,同時(shí)遵循由特殊到一般的思維認(rèn)識(shí)規(guī)律,滲透了旋轉(zhuǎn)變換的思想.
(3)在運(yùn)用定理及推論解題時(shí),必須注意要有“在同圓或等圓”這一前提條件.
五、布置作業(yè)
思考題:已知AB和CD是⊙O的兩條弦,OM和ON分別是AB和CD的弦心距,如果AB>CD,那么OM和ON有什么關(guān)系?為什么?
板書(shū)設(shè)計(jì)
課堂教學(xué)設(shè)計(jì)說(shuō)明
這份教案為1課時(shí).
如果內(nèi)容多,部分練習(xí)題可在下節(jié)課中處理.
摘自《初中幾何教案》
高二數(shù)學(xué)公開(kāi)課優(yōu)秀教案 9
一、教學(xué)內(nèi)容分析:
本節(jié)內(nèi)容在教材中有著重要的地位與作用,線性規(guī)劃是利用數(shù)學(xué)為工具來(lái)研究一定的人、財(cái)、物、時(shí)、空等資源在一定的條件下,如何精打細(xì)算巧安排,用最少的資源,取得的經(jīng)濟(jì)效益,這一部分內(nèi)容體現(xiàn)了數(shù)學(xué)的工具性、應(yīng)用性,同時(shí)滲透了化歸,數(shù)形結(jié)合的數(shù)學(xué)思維和解決實(shí)際問(wèn)題的一種重要的解題方法——數(shù)學(xué)建模法。
二、學(xué)生學(xué)習(xí)情況分析:
把實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并結(jié)合出解答是本節(jié)的重點(diǎn)和難點(diǎn),對(duì)許多學(xué)生來(lái)說(shuō),解數(shù)學(xué)應(yīng)用題的最常見(jiàn)的困難是不會(huì)持實(shí)際問(wèn)題轉(zhuǎn)化或數(shù)學(xué)問(wèn)題,即不會(huì)建模,對(duì)學(xué)生而言,解決應(yīng)用問(wèn)題的障礙主要有三類(lèi):①不能正確理解題意思,弄清各元素之間的關(guān)系;②不能弄清問(wèn)題的主次關(guān)系,因而抓不住問(wèn)題的'本質(zhì),無(wú)法建立數(shù)學(xué)模型;③孤立考慮單個(gè)問(wèn)題情境,不能多聯(lián)想。
三、設(shè)計(jì)思想:
注意學(xué)生的探究過(guò)程,讓學(xué)生體驗(yàn)探究問(wèn)題的成就感,一切以學(xué)生的探究活動(dòng)為主,以問(wèn)題是驅(qū)動(dòng),激發(fā)學(xué)生學(xué)習(xí)樂(lè)趣。
四、教學(xué)目標(biāo):
1、使學(xué)生了解線性規(guī)劃的意義以及約束條件、目標(biāo)函數(shù)、可行域、可行解、解等基本概念;了解線性規(guī)劃問(wèn)題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
2、通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力等。滲透集合,化歸,數(shù)形結(jié)合的數(shù)學(xué)思想,提問(wèn)“建模”和解決實(shí)際問(wèn)題的能力。
五、教學(xué)重點(diǎn)和難點(diǎn):
教學(xué)重點(diǎn):求線性目標(biāo)函數(shù)的最值問(wèn)題,培養(yǎng)學(xué)生“用數(shù)學(xué)”的意識(shí),即線性規(guī)劃在實(shí)際生活中的應(yīng)用。
教學(xué)難點(diǎn):把實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并結(jié)合出解答。
六、教學(xué)過(guò)程:
(一)問(wèn)題引入
某工廠用A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一會(huì)一件甲產(chǎn)品使用4個(gè)A配件耗時(shí)1個(gè)小時(shí),每生產(chǎn)一件乙產(chǎn)品使用4個(gè)B配件耗時(shí)2小時(shí),該廠每天最多可以配件廠獲得16個(gè)A配件和12個(gè)B配件,按每天工作8小時(shí)計(jì)算,該廠所有可能的月生產(chǎn)安排是什么?由學(xué)生列出不等關(guān)系,并畫(huà)出平面區(qū)域,由此引入新課。
(二)問(wèn)題深入,推進(jìn)新課
①引領(lǐng)學(xué)生自主探索引入問(wèn)題中的實(shí)際問(wèn)題,怎樣安排才有意義?
②若生產(chǎn)一件甲產(chǎn)品獲利2萬(wàn)元,生產(chǎn)一件乙產(chǎn)品獲利3萬(wàn)元,采用哪種生產(chǎn)安排利潤(rùn)?
設(shè)計(jì)意圖:
由實(shí)際問(wèn)題出發(fā)激發(fā)學(xué)生學(xué)習(xí)興趣,在探究過(guò)程中,看似簡(jiǎn)單的問(wèn)題,學(xué)生容易抓不住問(wèn)題的主干,需要適時(shí)的引導(dǎo)。
(三)揭示本質(zhì) 深化認(rèn)識(shí)
提出問(wèn)題:
① 上述探索的問(wèn)題中,Z的幾何意義是什么?結(jié)合圖形說(shuō)明
②結(jié)合以上探究,理解什么是目標(biāo)函數(shù)?線性目標(biāo)函數(shù)?什么是線性規(guī)劃?弄清什么是可行域解?可行域?解?
③你能根據(jù)以上探究總結(jié)出解決線性規(guī)劃問(wèn)題的一般步驟嗎?
(四)應(yīng)用示例
高二數(shù)學(xué)教案優(yōu)秀教案 10
一、教學(xué)過(guò)程
1.復(fù)習(xí)。
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。
求出函數(shù)y=x3的反函數(shù)。
2.新課。
先讓學(xué)生用幾何畫(huà)板畫(huà)出y=x3的圖象,學(xué)生紛紛動(dòng)手,很快畫(huà)出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因?yàn)樗麄兊玫搅巳缦碌膱D象(圖1):
教師在畫(huà)出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過(guò)教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對(duì),但是怎么會(huì)得到這個(gè)圖象,請(qǐng)大家討論。
師:我們請(qǐng)生1再給大家演示一下,大家?guī)退艺以颉?/p>
生3:?jiǎn)栴}出在他選擇的次序不對(duì)。
師:哪個(gè)次序?
生3:作點(diǎn)B前,選擇xA和xA3為B的坐標(biāo)時(shí),他先選擇xA3,后選擇xA,作出來(lái)的點(diǎn)的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請(qǐng)生1再做一次。
(這次生1在做的過(guò)程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)
師:看來(lái)問(wèn)題確實(shí)是出在這個(gè)地方,那么請(qǐng)同學(xué)再想想,為什么他采用了錯(cuò)誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?
師:我們請(qǐng)生4來(lái)告訴大家。
生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。
師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的。關(guān)系,同學(xué)們能不能看出這兩個(gè)函數(shù)的圖象有什么樣的關(guān)系?
(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問(wèn)。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。
師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?
師:我其實(shí)是想問(wèn)大家這兩個(gè)函數(shù)的圖象有沒(méi)有對(duì)稱(chēng)關(guān)系,有的話,是什么樣的對(duì)稱(chēng)關(guān)系?
生6:我發(fā)現(xiàn)這兩個(gè)圖象應(yīng)是關(guān)于某條直線對(duì)稱(chēng)。
師:能說(shuō)說(shuō)是關(guān)于哪條直線對(duì)稱(chēng)嗎?
生6:我還沒(méi)找出來(lái)。
學(xué)生通過(guò)移動(dòng)點(diǎn)A(點(diǎn)B、C隨之移動(dòng))后發(fā)現(xiàn),BC的中點(diǎn)M在同一條直線上,這條直線就是兩函數(shù)圖象的對(duì)稱(chēng)軸,在追蹤M點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對(duì)稱(chēng)。
師:這個(gè)結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對(duì)稱(chēng)關(guān)系嗎?請(qǐng)同學(xué)們用其他函數(shù)來(lái)試一試。
(學(xué)生紛紛畫(huà)出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng)。)
教師巡視全班時(shí)已經(jīng)發(fā)現(xiàn)這個(gè)問(wèn)題,將這個(gè)圖象傳給全班學(xué)生后,幾乎所有人都看出了問(wèn)題所在:圖中函數(shù)y=x2(x∈R)沒(méi)有反函數(shù),也不是函數(shù)的圖象。
最后教師與學(xué)生一起總結(jié):
點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對(duì)稱(chēng);
函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng)。
二、反思與點(diǎn)評(píng)
1.在開(kāi)學(xué)初,我就教學(xué)幾何畫(huà)板4。0的用法,在教函數(shù)圖象畫(huà)法的過(guò)程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時(shí),不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫(huà)板4。04中,能直接根據(jù)函數(shù)解析式畫(huà)出圖象,但這樣反而不能揭示圖象對(duì)稱(chēng)的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫(huà)板4。0進(jìn)行教學(xué)。
2.荷蘭數(shù)學(xué)教育家弗賴(lài)登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過(guò)程當(dāng)中,可借助于生動(dòng)直觀的形象來(lái)引導(dǎo)人們的思想過(guò)程,但常常由于圖形或想象的錯(cuò)誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過(guò)于直觀的例子常常會(huì)影響學(xué)生正確理解比較抽象的概念。
計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。
在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對(duì)稱(chēng)關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對(duì)反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時(shí)甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過(guò)計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來(lái)做數(shù)學(xué),在此過(guò)程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。
3.在引出兩個(gè)函數(shù)圖象對(duì)稱(chēng)關(guān)系的時(shí)候,問(wèn)題設(shè)計(jì)不甚妥當(dāng),本來(lái)是想要學(xué)生回答兩個(gè)函數(shù)圖象對(duì)稱(chēng)的關(guān)系,但學(xué)生誤以為是問(wèn)如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問(wèn)題在今后的教學(xué)中是必須力求避免的。
高二數(shù)學(xué)優(yōu)秀教案 11
教學(xué)目標(biāo)
1、知識(shí)與技能
(1)理解并掌握正弦函數(shù)的定義域、值域、周期性、(小)值、單調(diào)性、奇偶性;
(2)能熟練運(yùn)用正弦函數(shù)的性質(zhì)解題。
2、過(guò)程與方法
通過(guò)正弦函數(shù)在R上的圖像,讓學(xué)生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習(xí)。
3、情感態(tài)度與價(jià)值觀
通過(guò)本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗(yàn)自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識(shí)到轉(zhuǎn)化“矛盾”是解決問(wèn)題的有效途經(jīng);培養(yǎng)學(xué)生形成實(shí)事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。
教學(xué)重難點(diǎn)
重點(diǎn):正弦函數(shù)的性質(zhì)。
難點(diǎn):正弦函數(shù)的性質(zhì)應(yīng)用。
教學(xué)工具
投影儀
教學(xué)過(guò)程
【創(chuàng)設(shè)情境,揭示課題】
同學(xué)們,我們?cè)跀?shù)學(xué)一中已經(jīng)學(xué)過(guò)函數(shù),并掌握了討論一個(gè)函數(shù)性質(zhì)的幾個(gè)角度,你還記得有哪些嗎?在上一次課中,我們已經(jīng)學(xué)習(xí)了正弦函數(shù)的y=sinx在R上圖像,下面請(qǐng)同學(xué)們根據(jù)圖像一起討論一下它具有哪些性質(zhì)?
【探究新知】
讓學(xué)生一邊看投影,一邊仔細(xì)觀察正弦曲線的圖像,并思考以下幾個(gè)問(wèn)題:
(1)正弦函數(shù)的定義域是什么?
(2)正弦函數(shù)的值域是什么?
(3)它的最值情況如何?
(4)它的正負(fù)值區(qū)間如何分?
(5)?(x)=0的解集是多少?
師生一起歸納得出:
1、定義域:y=sinx的定義域?yàn)镽
2、值域:引導(dǎo)回憶單位圓中的正弦函數(shù)線,結(jié)論:|sinx|≤1(有界性)
再看正弦函數(shù)線(圖象)驗(yàn)證上述結(jié)論,所以y=sinx的值域?yàn)閇-1,1]
課后小結(jié)
歸納整理,整體認(rèn)識(shí)
(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及的主要數(shù)學(xué)思想方法有哪些?
(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
課后習(xí)題
作業(yè):習(xí)題1—4第3、4、5、6、7題。
高二數(shù)學(xué)教案 12
平面向量共線的坐標(biāo)表示
前提條件a=(x1,y1),b=(x2,y2),其中b≠0
結(jié)論當(dāng)且僅當(dāng)x1y2-x2y1=0時(shí),向量a、b(b≠0)共線
[點(diǎn)睛](1)平面向量共線的坐標(biāo)表示還可以寫(xiě)成x1x2=y1y2(x2≠0,y2≠0),即兩個(gè)不平行于坐標(biāo)軸的共線向量的對(duì)應(yīng)坐標(biāo)成比例;
(2)當(dāng)a≠0,b=0時(shí),a∥b,此時(shí)x1y2-x2y1=0也成立,即對(duì)任意向量a,b都有:x1y2-x2y1=0?a∥b.
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯(cuò)誤的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,則必有x1y2=x2y1.()
(2)向量(2,3)與向量(-4,-6)反向。()
答案:(1)√(2)√
2、若向量a=(1,2),b=(2,3),則與a+b共線的向量可以是()
A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)
答案:C
3、已知a=(1,2),b=(x,4),若a∥b,則x等于()
A.-12B.12C.-2D.2
答案:D
4、已知向量a=(-2,3),b∥a,向量b的起點(diǎn)為A(1,2),終點(diǎn)B在x軸上,則點(diǎn)B的坐標(biāo)為_(kāi)_______.
答案:73,0
向量共線的判定
[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),則λ的值等于()
A.12B.13C.1D.2
(2)已知A(2,1),B(0,4),C(1,3),D(5,-3)。判斷與是否共線?如果共線,它們的方向相同還是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假設(shè)a,b不共線,則由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),從而1=2μ,2=-2μ,方程組顯然無(wú)解,即a+2b與2a-2b不共線,這與(a+2b)∥(2a-2b)矛盾,從而假設(shè)不成立,故應(yīng)有a,b共線,所以1λ=21,即λ=12.
[答案]A
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共線。
又=-2,∴,方向相反。
綜上,與共線且方向相反。
向量共線的判定方法
(1)利用向量共線定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共線的坐標(biāo)表達(dá)式x1y2-x2y1=0直接求解。
[活學(xué)活用]
已知a=(1,2),b=(-3,2),當(dāng)k為何值時(shí),ka+b與a-3b平行,平行時(shí)它們的方向相同還是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b與a-3b平行,則-4(k-3)-10(2k+2)=0,
解得k=-13,此時(shí)ka+b=-13a+b=-13(a-3b),故ka+b與a-3b反向。
∴k=-13時(shí),ka+b與a-3b平行且方向相反。
三點(diǎn)共線問(wèn)題
[典例](1)已知=(3,4),=(7,12),=(9,16),求證:A,B,C三點(diǎn)共線;
(2)設(shè)向量=(k,12),=(4,5),=(10,k),當(dāng)k為何值時(shí),A,B,C三點(diǎn)
共線?
[解](1)證明:∵=-=(4,8),
=-=(6,12),
∴=32,即與共線。
又∵與有公共點(diǎn)A,∴A,B,C三點(diǎn)共線。
(2)若A,B,C三點(diǎn)共線,則,共線,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.
有關(guān)三點(diǎn)共線問(wèn)題的解題策略
(1)要判斷A,B,C三點(diǎn)是否共線,一般是看與,或與,或與是否共線,若共線,則A,B,C三點(diǎn)共線;
(2)使用A,B,C三點(diǎn)共線這一條件建立方程求參數(shù)時(shí),利用=λ,或=λ,或=λ都是可以的,但原則上要少用含未知數(shù)的表達(dá)式。
數(shù)學(xué)高二教案 13
一、教學(xué)內(nèi)容
這學(xué)期按照教育局教研室的要求,教學(xué)任務(wù)比較重。選修1-1,第三章《導(dǎo)數(shù)》,根據(jù)教研室的計(jì)劃,應(yīng)該安排在春節(jié)前。鑒于期末考試臨近,這一章沒(méi)有學(xué)習(xí),所以這學(xué)期的教學(xué)內(nèi)容有以下幾個(gè)部分:選修1-1《導(dǎo)數(shù)》,選修1-2,共四章《統(tǒng)計(jì)案例》,《推理與證明》,《數(shù)系的擴(kuò)充與復(fù)數(shù)的引入》。
二、教學(xué)策略
根據(jù)年山東省高考數(shù)學(xué)(文科)大綱的要求,應(yīng)及時(shí)調(diào)整教學(xué)計(jì)劃,切實(shí)重視學(xué)生學(xué)習(xí)的實(shí)施,讓學(xué)生的學(xué) 精心備課,精心指導(dǎo),針對(duì)目標(biāo)學(xué)生不放松,努力使目標(biāo)學(xué)生數(shù)學(xué)成績(jī)有效,積極交流,提高教學(xué)水平,同時(shí)認(rèn)真學(xué)習(xí)《框圖》,學(xué)習(xí)新課程,應(yīng)用新課程。
三、具體措施
這學(xué)期我主要從以下幾個(gè)方面做好教學(xué)工作:
1、注重學(xué)習(xí)計(jì)劃指導(dǎo)學(xué)習(xí),善用好學(xué)案例。注重研究老師如何說(shuō)話,就是注重研究學(xué)生如何學(xué)習(xí)。
2、盡量分層次做作業(yè),尤其是加餐,提高尖子生的學(xué)習(xí)成績(jī)。
3、特別注意學(xué)生作業(yè)的落實(shí),不定時(shí)查看學(xué)生的集錦和作業(yè)本。
4、組織單位通過(guò),做好試卷講評(píng)工作。
5、積極溝通目標(biāo)學(xué)生的想法和感受。
關(guān)于高二數(shù)學(xué)教案 14
【教學(xué)目標(biāo)】
1、會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
2、能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類(lèi)。
3、提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
【教學(xué)重難點(diǎn)】
教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
【教學(xué)過(guò)程】
1、情景導(dǎo)入
教師提出問(wèn)題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
2、展示目標(biāo)、檢查預(yù)習(xí)
3、合作探究、交流展示
(1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說(shuō)出它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?
(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。
在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問(wèn)題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類(lèi)
(4)以類(lèi)似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類(lèi)以及表示。
(5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
(6)引導(dǎo)學(xué)生以類(lèi)似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
(7)教師指出圓柱和棱柱?
4、質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。
(1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明)
(2)棱柱的任何兩個(gè)平面都可
(2)運(yùn)算律:設(shè)λ,μ為任意實(shí)數(shù),則有:
①λ(μa)=(λμ)a;
②(λ+μ)a=λa+μa;
③λ(a+b)=λa+λb;
特別地,有(—λ)a=—(λa)=λ(—a);
λ(a—b)=λa—λb。
[點(diǎn)睛](1)實(shí)數(shù)與向量可以進(jìn)行數(shù)乘運(yùn)算,但不能進(jìn)行加減運(yùn)算,如λ+a,λ—a均無(wú)法運(yùn)算。
(2)λa的結(jié)果為向量,所以當(dāng)λ=0時(shí),得到的結(jié)果為0而不是0。
2、向量共線的條件
向量a(a≠0)與b共線,當(dāng)且僅當(dāng)有一個(gè)實(shí)數(shù)λ,使b=λa。
[點(diǎn)睛](1)定理中a是非零向量,其原因是:若a=0,b≠0時(shí),雖有a與b共線,但不存在實(shí)數(shù)λ使b=λa成立;若a=b=0,a與b顯然共線,但實(shí)數(shù)λ不,任一實(shí)數(shù)λ都能使b=λa成立。
(2)a是非零向量,b可以是0,這時(shí)0=λa,所以有λ=0,如果b不是0,那么λ是不為零的實(shí)數(shù)。
3、向量的線性運(yùn)算
向量的加、減、數(shù)乘運(yùn)算? 對(duì)于任意向量a,b及任意實(shí)數(shù)λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯(cuò)誤的打“×”)
(1)λa的方向與a的方向一致。()
(2)共線向量定理中,條件a≠0可以去掉。()
(3)對(duì)于任意實(shí)數(shù)m和向量a,b,若ma=mb,則a=b。()
答案:(1)×(2)×(3)×
2、若|a|=1,|b|=2,且a與b方向相同,則下列關(guān)系式正確的是()
A、b=2aB、b=—2a
C、a=2bD、a=—2b
答案:A
3、在四邊形ABCD中,若=—12,則此四邊形是()
A、平行四邊形B、菱形
C、梯形D、矩形
答案:C
4、化簡(jiǎn):2(3a+4b)—7a=XXXXXX。
答案:—a+8b
向量的線性運(yùn)算
[例1]化簡(jiǎn)下列各式:
(1)3(6a+b)—9a+13b;
(2)12?3a+2b?—a+12b—212a+38b;
(3)2(5a—4b+c)—3(a—3b+c)—7a。
[解](1)原式=18a+3b—9a—3b=9a。
(2)原式=122a+32b—a—34b=a+34b—a—34b=0。
(3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。
向量線性運(yùn)算的方法
向量的線性運(yùn)算類(lèi)似于代數(shù)多項(xiàng)式的運(yùn)算,共線向量可以合并,即“合并同類(lèi)項(xiàng)”“提取公因式”,這里的“同類(lèi)項(xiàng)”“公因式”指的是向量。
高二數(shù)學(xué)教案 15
教學(xué)內(nèi)容
教材第2頁(yè)的例2,第3頁(yè)的小數(shù)乘法法則和“做一做”,練習(xí)一的第5、9題。
素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.使學(xué)生理解一個(gè)數(shù)乘以小數(shù)的意義。
2.掌握小數(shù)乘法的計(jì)算法則。
(二)能力訓(xùn)練點(diǎn)
1.能說(shuō)出小數(shù)乘法算式所表示的意義。
2.能比較正確地計(jì)算小數(shù)乘法,提高計(jì)算能力。
3.培養(yǎng)學(xué)生的遷移類(lèi)推能力和概括能力以及運(yùn)用所學(xué)知識(shí)解決新問(wèn)題的能力。
(三)德育滲透點(diǎn)
繼續(xù)滲透轉(zhuǎn)化思想。
教學(xué)重點(diǎn):
理解一個(gè)數(shù)乘以小數(shù)的意義,會(huì)應(yīng)用小數(shù)乘法的計(jì)算法則正確地進(jìn)行計(jì)算。
教學(xué)難點(diǎn):
理解一個(gè)數(shù)乘以小數(shù)的意義和小數(shù)乘法中積的小數(shù)點(diǎn)的定位。
教具學(xué)具準(zhǔn)備:
口算卡片、投影片。
教學(xué)步驟
一、鋪墊孕伏
1.口算:
0.3×6 0.8×4 7.2×0 4.2×8
0.25×4 3.6×3 4.3×5 0.6×9
2.說(shuō)出下列小數(shù)表示的意義:
0.2 0.5 0.45 0.824
使學(xué)生明確一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……
3.復(fù)習(xí)例1,花布每米6.5元,買(mǎi)5米要用多少元?
(1)指名列式計(jì)算,然后說(shuō)一說(shuō)小數(shù)乘以整數(shù)的意義和小數(shù)乘以整數(shù)的計(jì)算方法。
(2)引導(dǎo)學(xué)生知道:每米6.5元是單價(jià),5米是數(shù)量,求的是總價(jià)。根據(jù)單價(jià)×數(shù)量=總價(jià)也可以列出乘法算式。
二、探究新知
1.理解一個(gè)數(shù)乘以小數(shù)的意義。
(1)教學(xué)例2
①出示例2花布每米6.5元,買(mǎi)0.5米用多少元?
②讀題,理解題意,從題中你知道了什么?
引導(dǎo)學(xué)生知道:每米6.5元是單價(jià),0.5米是買(mǎi)的數(shù)量,求的是總價(jià)。根據(jù)單價(jià)×數(shù)量=總價(jià)可以列式為6.5×0.5。
教師板書(shū):
6.5×0.5
③用線段圖表示題中的數(shù)量關(guān)系:
④啟發(fā)學(xué)生理解:0.5米是1米的十分之五,6.5×0.5就是求6.5的十分之五是多少。
教師板書(shū):
求6.5的十分之五
引導(dǎo)學(xué)生類(lèi)推:
6.5×0.4就是求6.5的十分之四是多少,
6.5×0.7就是求6.5的十分之七是多少,
一個(gè)數(shù)乘以零點(diǎn)幾就是求這個(gè)數(shù)的十分之幾是多少。
互相討論得出結(jié)論:一個(gè)數(shù)乘以一位小數(shù)的意義是求這個(gè)數(shù)的十分之幾。
(2)補(bǔ)充例2,買(mǎi)0.82米用多少元?
①引導(dǎo)學(xué)生用線段圖表示:
②啟發(fā)學(xué)生理解:每米6.5元是布的單價(jià),0.82米是買(mǎi)布的數(shù)量,求的是總價(jià),列式為6.5×0.82。
教師板書(shū):
6.5×0.82
0.82米是1米的百分之八十二,6.5×0.82就是求6.5的百分之八十二。
教師板書(shū):
求6.5的百分之八十二
仿照6.5×0.5的教學(xué)方法,引導(dǎo)學(xué)生類(lèi)推得出:
一個(gè)數(shù)乘以?xún)晌恍?shù)的意義就是求這個(gè)數(shù)的百分之幾。
③師生共同小結(jié):一個(gè)數(shù)乘以一位小數(shù)的意義是求這個(gè)數(shù)的十分之幾,乘以?xún)晌恍?shù)的意義是求這個(gè)數(shù)的百分之幾。
④引導(dǎo)學(xué)生類(lèi)推:一個(gè)數(shù)乘以三位小數(shù)就是求這個(gè)數(shù)的千分之幾,一個(gè)數(shù)乘以四位小數(shù)就是求這個(gè)數(shù)的萬(wàn)分之幾,……
最后概括板書(shū):一個(gè)數(shù)乘以小數(shù)的意義是求這個(gè)數(shù)的十分之幾,百分之幾,千分之幾……
2.探究一個(gè)數(shù)乘以小數(shù)的計(jì)算方法。
(1)提出問(wèn)題,學(xué)生討論:
計(jì)算小數(shù)乘以整數(shù),是把小數(shù)轉(zhuǎn)化成整數(shù)計(jì)算的,6.5×0.5和6.5×0.82這兩個(gè)算式中,被乘數(shù)和乘數(shù)都含有小數(shù)位,應(yīng)該怎樣計(jì)算?
(2)通過(guò)討論匯報(bào),使學(xué)生明白:把6.5×0.5變成整數(shù)乘法,6.5變成65擴(kuò)大了10倍,0.5變成5也擴(kuò)大了10倍,這樣乘出來(lái)的積就擴(kuò)大了10×10=100倍,要求原來(lái)的'積,應(yīng)把乘出來(lái)的積再縮小100倍。同時(shí)教師板書(shū):
把6.5×0.82變成整數(shù)乘法,6.5變成65擴(kuò)大10倍,0.82變成82擴(kuò)大100倍,這樣乘出來(lái)的積就擴(kuò)大了10×100=1000倍。要求原來(lái)的積,應(yīng)把乘出來(lái)的積再縮小1000倍。教師板書(shū):
說(shuō)明書(shū)寫(xiě)的格式,并提示學(xué)生:要先點(diǎn)小數(shù)點(diǎn),再把小數(shù)末尾的“0”劃掉。
3.總結(jié)小數(shù)乘法的計(jì)算法則。
(1)引導(dǎo)學(xué)生觀察算式得出:兩個(gè)因數(shù)中一共有兩位小數(shù),積中就有兩位小數(shù);兩個(gè)因數(shù)中一共有三位小數(shù),積中就有三位小數(shù)。
(2)想一想:6.05×0.82的積中有幾位小數(shù)?6.052×0.82的積中有幾位小數(shù)?
(3)引導(dǎo)學(xué)生概括:兩個(gè)因數(shù)中一共有幾位小數(shù),積中就幾位小數(shù)。
(4)在小數(shù)乘以整數(shù)的計(jì)算方法的基礎(chǔ)上,師生共同歸納總結(jié)出小數(shù)乘法的計(jì)算法則。
(5)完成法則下面的“做一做”。
出示 67×0.3 2.14×6.2 0.375×12.4 2.16×3.52先判斷積里應(yīng)該有幾位小數(shù),再讓學(xué)生獨(dú)立計(jì)算,然后集體訂正。訂正時(shí)學(xué)生說(shuō)一說(shuō)是怎樣計(jì)算的。
三、鞏固發(fā)展
1.練習(xí)一5題
(1)題,先引導(dǎo)學(xué)生理解“十分之三”和“一半”分別用什么數(shù)表示,然后學(xué)生獨(dú)立列式。
(2)題,學(xué)生獨(dú)立列式,訂正時(shí),說(shuō)一說(shuō)根據(jù)什么列式的。
2.說(shuō)出下列算式表示的意義:
2.54×0.8 13×0.36 16.2×15 24×0.035
3.練習(xí)一6題
4.在下面各式的積中點(diǎn)上小數(shù)點(diǎn)。
5.練習(xí)一8題。學(xué)生獨(dú)立填書(shū),訂正時(shí)指名說(shuō)一說(shuō)是怎樣想的。
四、全課小結(jié):引導(dǎo)學(xué)生回憶這節(jié)課學(xué)習(xí)了什么知識(shí)?
五、布置作業(yè):練習(xí)一7題、9題。
高二數(shù)學(xué)教案 16
一、課前準(zhǔn)備:
【自主梳理】
1、對(duì)數(shù):
(1) 一般地,如果 ,那么實(shí)數(shù) 叫做________________,記為_(kāi)_______,其中 叫做對(duì)數(shù)的_______, 叫做________.
(2)以10為底的對(duì)數(shù)記為_(kāi)_______,以 為底的對(duì)數(shù)記為_(kāi)______.
(3) , 。
2、對(duì)數(shù)的運(yùn)算性質(zhì):
(1)如果 ,那么 ,
。
(2)對(duì)數(shù)的換底公式: 。
3、對(duì)數(shù)函數(shù):
一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是______.
4、對(duì)數(shù)函數(shù)的圖像與性質(zhì):
a1 0
圖象性
質(zhì) 定義域:___________
值域:_____________
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)_________
x(1,+)時(shí)________ x(0,1)時(shí)_________
x(1,+)時(shí)________
在___________上是增函數(shù) 在__________上是減函數(shù)
【自我檢測(cè)】
1、 的定義域?yàn)開(kāi)________.
2、化簡(jiǎn): 。
3、不等式 的解集為_(kāi)_______________.
4、利用對(duì)數(shù)的換底公式計(jì)算: 。
5、函數(shù) 的奇偶性是____________.
6、對(duì)于任意的 ,若函數(shù) ,則 與 的大小關(guān)系是___________________________.
二、課堂活動(dòng):
【例1】填空題:
(1) 。
(2)比較 與 的大小為_(kāi)__________.
(3)如果函數(shù) ,那么 的最大值是_____________.
(4)函數(shù) 的奇偶性是___________.
【例2】求函數(shù) 的定義域和值域。
【例3】已知函數(shù) 滿(mǎn)足 。
(1)求 的解析式;
(2)判斷 的奇偶性;
(3)解不等式 。
課堂小結(jié)
三、課后作業(yè)
1、 。略
2、函數(shù) 的定義域?yàn)開(kāi)______________.
3、函數(shù) 的值域是_____________.
4、若 ,則 的取值范圍是_____________.
5、設(shè) 則 的大小關(guān)系是_____________.
6、設(shè)函數(shù) ,若 ,則 的取值范圍為_(kāi)________________.
7、當(dāng) 時(shí),不等式 恒成立,則 的取值范圍為_(kāi)_____________.
8、函數(shù) 在區(qū)間 上的值域?yàn)?,則 的最小值為_(kāi)___________.
9、已知 。
(1)求 的定義域;
(2)判斷 的奇偶性并予以證明;
(3)求使 的 的取值范圍。
10、對(duì)于函數(shù) ,回答下列問(wèn)題:
(1)若 的定義域?yàn)?,求實(shí)數(shù) 的取值范圍;
(2)若 的值域?yàn)?,求實(shí)數(shù) 的取值范圍;
(3)若函數(shù) 在 內(nèi)有意義,求實(shí)數(shù) 的取值范圍。
四、糾錯(cuò)分析
錯(cuò)題卡 題 號(hào) 錯(cuò) 題 原 因 分 析
高二數(shù)學(xué)教案:對(duì)數(shù)與對(duì)數(shù)函數(shù)
一、課前準(zhǔn)備:
【自主梳理】
1、對(duì)數(shù)
(1)以 為底的 的對(duì)數(shù), ,底數(shù),真數(shù)。
(2) , 。
(3)0,1.
2、對(duì)數(shù)的運(yùn)算性質(zhì)
(1) , , 。
(2) 。
3、對(duì)數(shù)函數(shù)
, 。
4、對(duì)數(shù)函數(shù)的圖像與性質(zhì)
a1 0
圖象性質(zhì) 定義域:(0,+)
值域:R
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)y0
x(1,+)時(shí)y0 x(0,1)時(shí)y0
x(1,+)時(shí)y0
在(0,+)上是增函數(shù) 在(0,+)上是減函數(shù)
【自我檢測(cè)】
1、 2. 3.
4、 5.奇函數(shù) 6. 。
二、課堂活動(dòng):
【例1】填空題:
(1)3.
(2) 。
(3)0.
(4)奇函數(shù)。
【例2】解:由 得 。所以函數(shù) 的定義域是(0,1)。
因?yàn)?,所以,當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?;當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?。
【例3】解:(1) ,所以 。
(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱(chēng),所以
,所以 為奇函數(shù)。
(3) ,所以當(dāng) 時(shí), 解得
當(dāng) 時(shí), 解得 。
高二數(shù)學(xué)教案 17
學(xué)習(xí)目標(biāo)
1.回顧在平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法。
2.能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題。
學(xué)習(xí)過(guò)程
一、學(xué)前準(zhǔn)備
1、通過(guò)直角坐標(biāo)系,平面上的與(),曲線與建立了聯(lián)系,實(shí)現(xiàn)了。
2、閱讀P3思考得出在直角坐標(biāo)系中解決實(shí)際問(wèn)題的過(guò)程是:
二、新課導(dǎo)學(xué)
◆探究新知(預(yù)習(xí)教材P1~P4,找出疑惑之處)
問(wèn)題1:如何刻畫(huà)一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
問(wèn)題3:(1).如何把平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)(x,y)建立聯(lián)系?(2).平面直角坐標(biāo)系中點(diǎn)和有序?qū)崝?shù)對(duì)(x,y)是怎樣的關(guān)系?
問(wèn)題4:如何研究曲線與方程間的關(guān)系?結(jié)合課本例子說(shuō)明曲線與方程的關(guān)系?
問(wèn)題5:如何刻畫(huà)一個(gè)幾何圖形的位置?
需要設(shè)定一個(gè)參照系
(1)、數(shù)軸它使直線上任一點(diǎn)P都可以由惟一的實(shí)數(shù)x確定
(2)、平面直角坐標(biāo)系:在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定
(3)、空間直角坐標(biāo)系:在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定
(4)、抽象概括:在平面直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:A.曲線C上的點(diǎn)坐標(biāo)都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。
問(wèn)題6:如何建系?
根據(jù)幾何特點(diǎn)選擇適當(dāng)?shù)闹苯亲鴺?biāo)系。
(1)如果圖形有對(duì)稱(chēng)中心,可以選對(duì)稱(chēng)中心為坐標(biāo)原點(diǎn);
(2)如果圖形有對(duì)稱(chēng)軸,可以選擇對(duì)稱(chēng)軸為坐標(biāo)軸;
(3)使圖形上的特殊點(diǎn)盡可能多的在坐標(biāo)軸上。
高二數(shù)學(xué)優(yōu)秀教案 18
教學(xué)準(zhǔn)備
xxx
教學(xué)目標(biāo)
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;
4、掌握向量垂直的條件。
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):平面向量的數(shù)量積定義
教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)過(guò)程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)。
并規(guī)定0向量與任何向量的數(shù)量積為0.
×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎渴裁磿r(shí)候?yàn)樨?fù)?
2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?
(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定。
(2)兩個(gè)向量的數(shù)量積稱(chēng)為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分。符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替。
(3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0.因?yàn)槠渲衏osq有可能為0.
高二數(shù)學(xué)教案 19
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
熟練掌握三角函數(shù)式的求值
教學(xué)重難點(diǎn)
熟練掌握三角函數(shù)式的求值
教學(xué)過(guò)程
【知識(shí)點(diǎn)精講】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類(lèi)型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
注意點(diǎn):靈活角的變形和公式的變形
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
【例題選講】
課堂小結(jié)】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類(lèi)型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
注意點(diǎn):靈活角的變形和公式的變形
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
高二數(shù)學(xué)教案 20
一、教材分析
【教材地位及作用】
基本不等式又稱(chēng)為均值不等式,選自北京師范大學(xué)出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對(duì)象為高二學(xué)生,本節(jié)課為第一課時(shí),重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和掌握了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問(wèn)題奠定基礎(chǔ)。因此基本不等式在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。
【教學(xué)目標(biāo)】
依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):
知識(shí)與技能目標(biāo):理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;
過(guò)程與方法目標(biāo):通過(guò)探究基本不等式,使學(xué)生體會(huì)知識(shí)的形成過(guò)程,培養(yǎng)分析、解決問(wèn)題的能力;
情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
【教學(xué)重難點(diǎn)】
重點(diǎn):理解掌握基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義。
難點(diǎn):利用基本不等式推導(dǎo)不等式。
關(guān)鍵是對(duì)基本不等式的理解掌握。
二、教法分析
本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開(kāi),從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率。
三、學(xué)法指導(dǎo)
新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,倡導(dǎo)積極主動(dòng),勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過(guò)讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識(shí),使學(xué)生成為學(xué)習(xí)的主人。
四、教學(xué)過(guò)程
教學(xué)過(guò)程設(shè)計(jì)以問(wèn)題為中心,以探究解決問(wèn)題的方法為主線展開(kāi)。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
具體過(guò)程安排如下:
(一)基本不等式的教學(xué)設(shè)計(jì)創(chuàng)設(shè)情景,提出問(wèn)題
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí)。基于此,設(shè)置如下情境:
上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。
[問(wèn)題1]請(qǐng)觀察會(huì)標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們?cè)诿娣e上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組討論)
(二)探究問(wèn)題,抽象歸納
基本不等式的教學(xué)設(shè)計(jì)1.探究圖形中的不等關(guān)系
形的角度----(利用多媒體展示會(huì)標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個(gè)直角三角形的面積之和小于或等于正方形的面積。)
數(shù)的角度
[問(wèn)題2]若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?
學(xué)生討論結(jié)果:。
[問(wèn)題3]大家看,這個(gè)圖形里還真有點(diǎn)奧妙。我們從圖中找到了一個(gè)不等式。這里a、b的取值有沒(méi)有什么限制條件?不等式中的等號(hào)什么時(shí)候成立呢?(師生共同探索)
咱們?cè)倏匆豢磮D形的變化,(教師演示)
(學(xué)生發(fā)現(xiàn))當(dāng)a=b四個(gè)直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即。探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。
設(shè)計(jì)意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計(jì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
2.抽象歸納:
一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
[問(wèn)題4]你能給出它的證明嗎?
學(xué)生在黑板上板書(shū)。
[問(wèn)題5]特別地,當(dāng)時(shí),在不等式中,以、分別代替a、b,得到什么?
學(xué)生歸納得出。
設(shè)計(jì)意圖:類(lèi)比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ)。
【歸納總結(jié)】
如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
我們稱(chēng)此不等式為基本不等式。其中稱(chēng)為a,b的算術(shù)平均數(shù),稱(chēng)為a,b的幾何平均數(shù)。
3.探究基本不等式證明方法:
[問(wèn)題6]如何證明基本不等式?
設(shè)計(jì)意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。
方法一:作差比較或由基本不等式的教學(xué)設(shè)計(jì)展開(kāi)證明。
方法二:分析法
要證
只要證2
要證,只要證2
要證,只要證
顯然,是成立的。當(dāng)且僅當(dāng)a=b時(shí),中的等號(hào)成立。
4.理解升華
1)文字語(yǔ)言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2)符號(hào)語(yǔ)言敘述:
若,則有,當(dāng)且僅當(dāng)a=b時(shí),。
[問(wèn)題7]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:
當(dāng)a=b時(shí),取等號(hào),即;
僅當(dāng)a=b時(shí),取等號(hào),即。
3)探究基本不等式的幾何意義:
基本不等式的教學(xué)設(shè)計(jì)借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋?zhuān)ㄟ^(guò)數(shù)形結(jié)合,賦予不等式幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號(hào)成立的條件。
如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),
CD⊥AB,AC=a,CB=b,
[問(wèn)題8]你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?
(教師演示,學(xué)生直觀感覺(jué))
易證RtACDRtDCB,那么CD2=CA·CB
即CD=.
這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立。
因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
4)聯(lián)想數(shù)列的知識(shí)理解基本不等式
從形的角度來(lái)看,基本不等式具有特定的幾何意義;從數(shù)的角度來(lái)看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系。
[問(wèn)題9]回憶一下你所學(xué)的知識(shí)中,有哪些地方出現(xiàn)過(guò)“和”與“積”的結(jié)構(gòu)?
歸納得出:
均值不等式的代數(shù)解釋為:兩個(gè)正數(shù)的等差中項(xiàng)不小它們的等比中項(xiàng)。
基本不等式的教學(xué)設(shè)計(jì)(四)體會(huì)新知,遷移應(yīng)用
例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計(jì)
(2)如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),設(shè)AC=a,CB=b,
,過(guò)作交于,你能利用這個(gè)圖形得出這個(gè)不等式的一種幾何解釋嗎?
設(shè)計(jì)意圖:以上例題是根據(jù)基本不等式的使用條件中的難點(diǎn)和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識(shí),進(jìn)一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時(shí),等號(hào)成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。
(五)演練反饋,鞏固深化
公式應(yīng)用之一:
1.試判斷與與2的大小關(guān)系?
問(wèn)題:如果將條件“x>0”去掉,上述結(jié)論是否仍然成立?
2.試判斷與7的大小關(guān)系?
公式應(yīng)用之二:
設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問(wèn)題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中
(1)用一個(gè)兩臂長(zhǎng)短有差異的天平稱(chēng)一樣物品,有人說(shuō)只要左右各秤一次,將兩次所稱(chēng)重量相加后除以2就可以了。你覺(jué)得這種做法比實(shí)際重量輕了還是重了?
(2)甲、乙兩商場(chǎng)對(duì)單價(jià)相同的同類(lèi)產(chǎn)品進(jìn)行促銷(xiāo)。甲商場(chǎng)采取的促銷(xiāo)方式是在原價(jià)p折的基礎(chǔ)上再打q折;乙商場(chǎng)的促銷(xiāo)方式則是兩次都打折。對(duì)顧客而言,哪種打折方式更合算?(0
≠q)
(五)反思總結(jié),整合新知:
通過(guò)本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問(wèn)題需要請(qǐng)教?
設(shè)計(jì)意圖:通過(guò)反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平。從各種角度對(duì)均值不等式進(jìn)行總結(jié),目的是為了讓學(xué)生掌握本節(jié)課的重點(diǎn),突破難點(diǎn)
老師根據(jù)情況完善如下:
知識(shí)要點(diǎn):
(1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征
(2)基本不等式在幾何、代數(shù)及實(shí)際應(yīng)用三方面的意義
思想方法技巧:
(1)數(shù)形結(jié)合思想、“整體與局部”
(2)歸納與類(lèi)比思想
(3)換元法、比較法、分析法
(七)布置作業(yè),更上一層
1.閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計(jì)
2.書(shū)面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計(jì)
3.思考題:類(lèi)比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會(huì)有怎樣的不等式?
設(shè)計(jì)意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時(shí)考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。
五、評(píng)價(jià)分析
1.在建立新知的過(guò)程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識(shí)來(lái)分析問(wèn)題、解決問(wèn)題,以形成比較系統(tǒng)和完整的知識(shí)結(jié)構(gòu)。每個(gè)問(wèn)題在設(shè)計(jì)時(shí),充分考慮了學(xué)生的具體情況,力爭(zhēng)提問(wèn)準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問(wèn)持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價(jià)值,對(duì)知識(shí)的理解和掌握在不斷的思考和討論中完善和加深。
2.本節(jié)的教學(xué)中要求學(xué)生對(duì)基本不等式在數(shù)與形兩個(gè)方面都有比較充分的認(rèn)識(shí),特別強(qiáng)調(diào)數(shù)與形的統(tǒng)一,教學(xué)過(guò)程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對(duì)基本不等式得以深刻理解。“數(shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠掌握并且會(huì)用的,只有學(xué)生通過(guò)實(shí)踐,意識(shí)到它的好處之后,學(xué)生才會(huì)在解決問(wèn)題時(shí)去嘗試使用,只有通過(guò)不斷的使用才能促進(jìn)學(xué)生對(duì)這種思想方法的再理解,從而達(dá)到掌握它的目的。
六、板書(shū)設(shè)計(jì)
§3.3基本不等式
一、重要不等式
二、基本不等式
1.文字語(yǔ)言敘述
2.符號(hào)語(yǔ)言敘述
3.幾何意義
4.代數(shù)解釋
三、應(yīng)用舉例
例1.
四、演練反饋
五、總結(jié)歸納
1.知識(shí)要點(diǎn)
2.思想方法
高二數(shù)學(xué)教案 21
課題:2。1曲線與方程
課時(shí):01
課型:新授課
一、教學(xué)目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡以及求動(dòng)點(diǎn)軌跡方程的常用技巧與方法。
(二)能力訓(xùn)練點(diǎn)
通過(guò)對(duì)求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學(xué)生綜合運(yùn)用各方面知識(shí)的能力。
(三)學(xué)科滲透點(diǎn)
通過(guò)對(duì)求軌跡方程的常用技巧與方法的介紹,使學(xué)生掌握常用動(dòng)點(diǎn)的軌?
二、教材分析
1、重點(diǎn):求動(dòng)點(diǎn)的軌跡方程的常用技巧與方法。
(解決辦法:對(duì)每種方法用例題加以說(shuō)明,使學(xué)生掌握這種方法。)
2、難點(diǎn):作相關(guān)點(diǎn)法求動(dòng)點(diǎn)的軌跡方法。
(解決辦法:先使學(xué)生了解相關(guān)點(diǎn)法的思路,再用例題進(jìn)行講解。)
教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。
教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神。
三、教學(xué)過(guò)程
(一)復(fù)習(xí)引入
大家知道,平面解析幾何研究的主要問(wèn)題是:
(1)根據(jù)已知條件,求出表示平面曲線的方程;
(2)通過(guò)方程,研究平面曲線的性質(zhì)。
我們已經(jīng)對(duì)常見(jiàn)曲線圓、橢圓、雙曲線以及拋物線進(jìn)行過(guò)這兩個(gè)方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來(lái)對(duì)根據(jù)已知條件求曲線的軌跡方程的常見(jiàn)技巧與方法進(jìn)行系統(tǒng)分析。
(二)幾種常見(jiàn)求軌跡方程的方法
1、直接法
由題設(shè)所給(或通過(guò)分析圖形的幾何性質(zhì)而得出)的動(dòng)點(diǎn)所滿(mǎn)足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡(jiǎn)得曲線的方程,這種方法叫直接法。
例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動(dòng)點(diǎn)P的軌跡方程;
(2)過(guò)點(diǎn)A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點(diǎn)的軌跡。
對(duì)(1)分析:
動(dòng)點(diǎn)P的軌跡是不知道的,不能考查其幾何特征,但是給出了動(dòng)點(diǎn)P的運(yùn)動(dòng)規(guī)律:|OP|=2R或|OP|=0。
解:設(shè)動(dòng)點(diǎn)P(x,y),則有|OP|=2R或|OP|=0。
即x2+y2=4R2或x2+y2=0。
故所求動(dòng)點(diǎn)P的軌跡方程為x2+y2=4R2或x2+y2=0。
對(duì)(2)分析:
題設(shè)中沒(méi)有具體給出動(dòng)點(diǎn)所滿(mǎn)足的幾何條件,但可以通過(guò)分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點(diǎn)連線垂直于弦,它們的斜率互為負(fù)倒數(shù)。由學(xué)生演板完成,解答為:
設(shè)弦的中點(diǎn)為M(x,y),連結(jié)OM,則OM⊥AM。∵kOM·kAM=—1,
其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的一段弧(不含端點(diǎn))。
2、定義法
利用所學(xué)過(guò)的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫(xiě)出所求的動(dòng)點(diǎn)的軌跡方程,這種方法叫做定義法。這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識(shí)分析得出這些條件。
直平分線l交半徑OQ于點(diǎn)P(見(jiàn)圖2-45),當(dāng)Q點(diǎn)在圓周上運(yùn)動(dòng)時(shí),求點(diǎn)P的軌跡方程。
分析:
∵點(diǎn)P在AQ的垂直平分線上,∴|PQ|=|PA|。
又P在半徑OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。
故P點(diǎn)到兩定點(diǎn)距離之和是定值,可用橢圓定義
寫(xiě)出P點(diǎn)的軌跡方程。
解:連接PA ∵l⊥PQ,∴|PA|=|PQ|。
又P在半徑OQ上。∴|PO|+|PQ|=2。
由橢圓定義可知:P點(diǎn)軌跡是以O(shè)、A為焦點(diǎn)的橢圓。
3、相關(guān)點(diǎn)法
若動(dòng)點(diǎn)P(x,y)隨已知曲線上的點(diǎn)Q(x0,y0)的變動(dòng)而變動(dòng),且x0、y0可用x、y表示,則將Q點(diǎn)坐標(biāo)表達(dá)式代入已知曲線方程,即得點(diǎn)P的軌跡方程。這種方法稱(chēng)為相關(guān)點(diǎn)法(或代換法)。
例3 已知拋物線y2=x+1,定點(diǎn)A(3,1)、B為拋物線上任意一點(diǎn),點(diǎn)P在線段AB上,且有BP∶PA=1∶2,當(dāng)B點(diǎn)在拋物線上變動(dòng)時(shí),求點(diǎn)P的軌跡方程。
分析:
P點(diǎn)運(yùn)動(dòng)的原因是B點(diǎn)在拋物線上運(yùn)動(dòng),因此B可作為相關(guān)點(diǎn),應(yīng)先找出點(diǎn)P與點(diǎn)B的聯(lián)系。
解:設(shè)點(diǎn)P(x,y),且設(shè)點(diǎn)B(x0,y0)
∵BP∶PA=1∶2,
4、待定系數(shù)法
求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求。
例4 已知拋物線y2=4x和以坐標(biāo)軸為對(duì)稱(chēng)軸、實(shí)軸在y軸上的雙曲
曲線方程。
分析:
因?yàn)殡p曲線以坐標(biāo)軸為對(duì)稱(chēng)軸,實(shí)軸在y軸上,所以可設(shè)雙曲線方
ax2—4b2x+a2b2=0
∵拋物線和雙曲線僅有兩個(gè)公共點(diǎn),根據(jù)它們的對(duì)稱(chēng)性,這兩個(gè)點(diǎn)的橫坐標(biāo)應(yīng)相等,因此方程ax2—4b2x+a2b2=0應(yīng)有等根。
∴△=16b4—4a4b2=0,即a2=2b。
(以下由學(xué)生完成)
由弦長(zhǎng)公式得:
即a2b2=4b2—a2。
(三)鞏固練習(xí)
用十多分鐘時(shí)間作一個(gè)小測(cè)驗(yàn),檢查一下教學(xué)效果。練習(xí)題用一小黑板給出。
1、△ABC一邊的兩個(gè)端點(diǎn)是B(0,6)和C(0,—6),另兩邊斜率的
2、點(diǎn)P與一定點(diǎn)F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點(diǎn)P的軌跡方程,并說(shuō)明軌跡是什么圖形?
3、求拋物線y2=2px(p>0)上各點(diǎn)與焦點(diǎn)連線的中點(diǎn)的軌跡方程。
答案:
義法)
由中點(diǎn)坐標(biāo)公式得:
(四)、教學(xué)反思
求曲線的軌跡方程一般地有直接法、定義法、相關(guān)點(diǎn)法、待定系數(shù)法,還有參數(shù)法、復(fù)數(shù)法也是求曲線的軌跡方程的常見(jiàn)方法,這等到講了參數(shù)方程、復(fù)數(shù)以后再作介紹。
四、布置作業(yè)
1、兩定點(diǎn)的距離為6,點(diǎn)M到這兩個(gè)定點(diǎn)的距離的平方和為26,求點(diǎn)M的軌跡方程。
2、動(dòng)點(diǎn)P到點(diǎn)F1(1,0)的距離比它到F2(3,0)的距離少2,求P點(diǎn)的軌跡。
3、已知圓x2+y2=4上有定點(diǎn)A(2,0),過(guò)定點(diǎn)A作弦AB,并延長(zhǎng)到點(diǎn)P,使3|AB|=2|AB|,求動(dòng)點(diǎn)P的軌跡方程。
作業(yè)答案:
1、以?xún)啥c(diǎn)A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系,得點(diǎn)M的軌跡方程x2+y2=4。
2、∵|PF2|—|PF|=2,且|F1F2|∴P點(diǎn)只能在x軸上且x<1,軌跡是一條射線。
高二數(shù)學(xué)教案 22
教學(xué)目標(biāo):
1.了解復(fù)數(shù)的幾何意義,會(huì)用復(fù)平面內(nèi)的點(diǎn)和向量來(lái)表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.
2.通過(guò)建立復(fù)平面上的點(diǎn)與復(fù)數(shù)的一一對(duì)應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.
教學(xué)重點(diǎn):
復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.
教學(xué)難點(diǎn):
復(fù)數(shù)加減法的幾何意義.
教學(xué)過(guò)程:
一 、問(wèn)題情境
我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來(lái)表示.那么,復(fù)數(shù)是否也能用點(diǎn)來(lái)表示呢?
二、學(xué)生活動(dòng)
問(wèn)題1 任何一個(gè)復(fù)數(shù)a+bi都可以由一個(gè)有序?qū)崝?shù)對(duì)(a,b)惟一確定,而有序?qū)崝?shù)對(duì)(a,b)與平面直角坐標(biāo)系中的點(diǎn)是一一對(duì)應(yīng)的,那么我們?cè)鯓佑闷矫嫔系狞c(diǎn)來(lái)表示復(fù)數(shù)呢?
問(wèn)題2 平面直角坐標(biāo)系中的點(diǎn)A與以原點(diǎn)O為起點(diǎn),A為終點(diǎn)的向量是一一對(duì)應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?
問(wèn)題3 任何一個(gè)實(shí)數(shù)都有絕對(duì)值,它表示數(shù)軸上與這個(gè)實(shí)數(shù)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.任何一個(gè)向量都有模,它表示向量的長(zhǎng)度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對(duì)值)的概念嗎?它又有什么幾何意義呢?
問(wèn)題4 復(fù)數(shù)可以用復(fù)平面的向量來(lái)表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎??jī)蓚€(gè)復(fù)數(shù)差的模有什么幾何意義?
三、建構(gòu)數(shù)學(xué)
1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實(shí)部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點(diǎn)Z(a,b),我們可以用點(diǎn)Z(a,b)來(lái)表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.
2.復(fù)平面:建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面.其中x軸為實(shí)軸,y軸為虛軸.實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù).
3.因?yàn)閺?fù)平面上的點(diǎn)Z(a,b)與以原點(diǎn)O為起點(diǎn)、Z為終點(diǎn)的向量一一對(duì)應(yīng),所以我們也可以用向量來(lái)表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.
6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個(gè)復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個(gè)復(fù)數(shù)對(duì)應(yīng)的兩點(diǎn)間的距離.同時(shí),復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.
四、數(shù)學(xué)應(yīng)用
例1 在復(fù)平面內(nèi),分別用點(diǎn)和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.
練習(xí) 課本P123練習(xí)第3,4題(口答).
思考
1.復(fù)平面內(nèi),表示一對(duì)共軛虛數(shù)的兩個(gè)點(diǎn)具有怎樣的位置關(guān)系?
2.如果復(fù)平面內(nèi)表示兩個(gè)虛數(shù)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),那么它們的實(shí)部和虛部分別滿(mǎn)足什么關(guān)系?
3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.
4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對(duì)應(yīng)的點(diǎn)在虛軸上”的_____條件.
例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于第二象限,求實(shí)數(shù)m允許的取值范圍.
例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大小.
思考 任意兩個(gè)復(fù)數(shù)都可以比較大小嗎?
例4 設(shè)z∈C,滿(mǎn)足下列條件的點(diǎn)Z的集合是什么圖形?
(1)│z│=2;(2)2<│z│<3.
變式:課本P124習(xí)題3.3第6題.
五、要點(diǎn)歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.復(fù)數(shù)的幾何意義.
2.復(fù)數(shù)加減法的幾何意義.
3.?dāng)?shù)形結(jié)合的思想方法.
高二數(shù)學(xué)教案大全 23
1.本節(jié)課的重點(diǎn)是理解算法的概念,體會(huì)算法的思想,難點(diǎn)是掌握簡(jiǎn)單問(wèn)題算法的表述。
2.本節(jié)課要重點(diǎn)掌握的規(guī)律方法
(1)掌握算法的特征,見(jiàn)講1;
(2)掌握設(shè)計(jì)算法的一般步驟,見(jiàn)講2;
(3)會(huì)設(shè)計(jì)實(shí)際問(wèn)題的算法,見(jiàn)講3.
3.本節(jié)課的易錯(cuò)點(diǎn)
(1)混淆算法的特征,如講1.
(2)算法語(yǔ)言不規(guī)范致誤,如講3.
課下能力提升(一)
[學(xué)業(yè)水平達(dá)標(biāo)練]
題組1算法的含義及特征
1.下列關(guān)于算法的說(shuō)法錯(cuò)誤的是()
A.一個(gè)算法的步驟是可逆的
B.描述算法可以有不同的方式
C.設(shè)計(jì)算法要本著簡(jiǎn)單方便的原則
D.一個(gè)算法不可以無(wú)止境地運(yùn)算下去
解析:選A由算法定義可知B、C、D對(duì),A錯(cuò)。
2.下列語(yǔ)句表達(dá)的是算法的有()
①撥本地電話的過(guò)程為:1提起話筒;2撥號(hào);3等通話信號(hào);4開(kāi)始通話或掛機(jī);5結(jié)束通話;
②利用公式V=Sh計(jì)算底面積為3,高為4的三棱柱的體積;
③x2-2x-3=0;
④求所有能被3整除的正數(shù),即3,6,9,12,….
A.①②B.①②③
C.①②④D.①②③④
解析:選A算法通常是指按照一定規(guī)則解決某一類(lèi)問(wèn)題的明確和有限的步驟。①②都各表達(dá)了一種算法;③只是一個(gè)純數(shù)學(xué)問(wèn)題,不是一個(gè)明確步驟;④的步驟是無(wú)窮的,與算法的有窮性矛盾。
3.下列各式中S的值不可以用算法求解的是()
A.S=1+2+3+4
B.S=12+22+32+…+1002
C.S=1+12+…+110000
D.S=1+2+3+4+…
解析:選DD中的求和不符合算法步驟的有限性,所以它不可以用算法求解,故選D.
題組2算法設(shè)計(jì)
4.給出下面一個(gè)算法:
第一步,給出三個(gè)數(shù)x,y,z.
第二步,計(jì)算M=x+y+z.
第三步,計(jì)算N=13M.
第四步,得出每次計(jì)算結(jié)果。
則上述算法是()
A.求和B.求余數(shù)
C.求平均數(shù)D.先求和再求平均數(shù)
解析:選D由算法過(guò)程知,M為三數(shù)之和,N為這三數(shù)的平均數(shù)。
5.(2016?東營(yíng)高一檢測(cè))一個(gè)算法步驟如下:
S1,S取值0,i取值1;
S2,如果i≤10,則執(zhí)行S3,否則執(zhí)行S6;
S3,計(jì)算S+i并將結(jié)果代替S;
S4,用i+2的值代替i;
S5,轉(zhuǎn)去執(zhí)行S2;
S6,輸出S.
運(yùn)行以上步驟后輸出的結(jié)果S=()
A.16B.25
C.36D.以上均不對(duì)
解析:選B由以上計(jì)算可知:S=1+3+5+7+9=25,答案為B.
6.給出下面的算法,它解決的是()
第一步,輸入x.
第二步,如果x<0,則y=x2;否則執(zhí)行下一步。
第三步,如果x=0,則y=2;否則y=-x2.
第四步,輸出y.
A.求函數(shù)y=x2?x<0?,-x2?x≥0?的函數(shù)值
B.求函數(shù)y=x2?x<0?,2?x=0?,-x2?x>0?的函數(shù)值
C.求函數(shù)y=x2?x>0?,2?x=0?,-x2?x<0?的函數(shù)值
D.以上都不正確
解析:選B由算法知,當(dāng)x<0時(shí),y=x2;當(dāng)x=0時(shí),y=2;當(dāng)x>0時(shí),y=-x2.故選B.
7.試設(shè)計(jì)一個(gè)判斷圓(x-a)2+(y-b)2=r2和直線Ax+By+C=0位置關(guān)系的算法。
解:算法步驟如下:
第一步,輸入圓心的坐標(biāo)(a,b)、半徑r和直線方程的系數(shù)A、B、C.
第二步,計(jì)算z1=Aa+Bb+C.
第三步,計(jì)算z2=A2+B2.
第四步,計(jì)算d=z1z2.
第五步,如果d>r,則輸出“相離”;如果d=r,則輸出“相切”;如果d
8.某商場(chǎng)舉辦優(yōu)惠促銷(xiāo)活動(dòng)。若購(gòu)物金額在800元以上(不含800元),打7折;若購(gòu)物金額在400元以上(不含400元)800元以下(含800元),打8折;否則,不打折。請(qǐng)為商場(chǎng)收銀員設(shè)計(jì)一個(gè)算法,要求輸入購(gòu)物金額x,輸出實(shí)際交款額y.
解:算法步驟如下:
第一步,輸入購(gòu)物金額x(x>0).
第二步,判斷“x>800”是否成立,若是,則y=0.7x,轉(zhuǎn)第四步;否則,執(zhí)行第三步。
第三步,判斷“x>400”是否成立,若是,則y=0.8x;否則,y=x.
第四步,輸出y,結(jié)束算法。
題組3算法的實(shí)際應(yīng)用
9.國(guó)際奧委會(huì)宣布2020年夏季奧運(yùn)會(huì)主辦城市為日本的東京。據(jù)《中國(guó)體育報(bào)》報(bào)道:對(duì)參與競(jìng)選的5個(gè)夏季奧林匹克運(yùn)動(dòng)會(huì)申辦城市進(jìn)行表決的操作程序是:首先進(jìn)行第一輪投票,如果有一個(gè)城市得票數(shù)超過(guò)總票數(shù)的一半,那么該城市將獲得舉辦權(quán);如果所有申辦城市得票數(shù)都不超過(guò)總票數(shù)的一半,則將得票最少的城市淘汰,然后進(jìn)行第二輪投票;如果第二輪投票仍沒(méi)選出主辦城市,將進(jìn)行第三輪投票,如此重復(fù)投票,直到選出一個(gè)主辦城市為止,寫(xiě)出投票過(guò)程的算法。
解:算法如下:
第一步,投票。
第二步,統(tǒng)計(jì)票數(shù),如果一個(gè)城市得票數(shù)超過(guò)總票數(shù)的一半,那么該城市就獲得主辦權(quán),否則淘汰得票數(shù)最少的城市并轉(zhuǎn)第一步。
第三步,宣布主辦城市。
[能力提升綜合練]
1.小明中午放學(xué)回家自己煮面條吃,有下面幾道工序:①洗鍋、盛水2分鐘;②洗菜6分鐘;③準(zhǔn)備面條及佐料2分鐘;④用鍋把水燒開(kāi)10分鐘;⑤煮面條和菜共3分鐘。以上各道工序,除了④之外,一次只能進(jìn)行一道工序。小明要將面條煮好,最少要用()
A.13分鐘B.14分鐘
C.15分鐘D.23分鐘
解析:選C①洗鍋、盛水2分鐘+④用鍋把水燒開(kāi)10分鐘(同時(shí)②洗菜6分鐘+③準(zhǔn)備面條及佐料2分鐘)+⑤煮面條和菜共3分鐘=15分鐘。解決一個(gè)問(wèn)題的算法不是的,但在設(shè)計(jì)時(shí)要綜合考慮各個(gè)方面的因素,選擇一種較好的算法。
2.在用二分法求方程零點(diǎn)的算法中,下列說(shuō)法正確的是()
A.這個(gè)算法可以求方程所有的零點(diǎn)
B.這個(gè)算法可以求任何方程的零點(diǎn)
C.這個(gè)算法能求方程所有的近似零點(diǎn)
D.這個(gè)算法并不一定能求方程所有的近似零點(diǎn)
解析:選D二分法求方程零點(diǎn)的算法中,僅能求方程的一些特殊的近似零點(diǎn)(滿(mǎn)足函數(shù)零點(diǎn)存在性定理的條件),故D正確。
3.(2016?青島質(zhì)檢)結(jié)合下面的算法:
第一步,輸入x.
第二步,判斷x是否小于0,若是,則輸出x+2,否則執(zhí)行第三步。
第三步,輸出x-1.
當(dāng)輸入的x的值為-1,0,1時(shí),輸出的結(jié)果分別為()
A.-1,0,1B.-1,1,0
C.1,-1,0D.0,-1,1
解析:選C根據(jù)x值與0的關(guān)系選擇執(zhí)行不同的步驟。
4.有如下算法:
第一步,輸入不小于2的正整數(shù)n.
第二步,判斷n是否為2.若n=2,則n滿(mǎn)足條件;若n>2,則執(zhí)行第三步。
第三步,依次從2到n-1檢驗(yàn)?zāi)懿荒苷齨,若不能整除,則n滿(mǎn)足條件。
則上述算法滿(mǎn)足條件的n是()
A.質(zhì)數(shù)B.奇數(shù)
C.偶數(shù)D.合數(shù)
解析:選A根據(jù)質(zhì)數(shù)、奇數(shù)、偶數(shù)、合數(shù)的定義可知,滿(mǎn)足條件的n是質(zhì)數(shù)。
5.(2016?濟(jì)南檢測(cè))輸入一個(gè)x值,利用y=x-1求函數(shù)值的算法如下,請(qǐng)將所缺部分補(bǔ)充完整:
第一步:輸入x;
第二步:________;
第三步:當(dāng)x<1時(shí),計(jì)算y=1-x;
第四步:輸出y.
解析:以x-1與0的大小關(guān)系為分類(lèi)準(zhǔn)則知第二步應(yīng)填當(dāng)x≥1時(shí),計(jì)算y=x-1.
答案:當(dāng)x≥1時(shí),計(jì)算y=x-1
6.已知一個(gè)算法如下:
第一步,令m=a.
第二步,如果b<m,則m=b.<p="">
第三步,如果c<m,則m=c.<p="">
第四步,輸出m.
如果a=3,b=6,c=2,則執(zhí)行這個(gè)算法的結(jié)果是________.
解析:這個(gè)算法是求a,b,c三個(gè)數(shù)中的最小值,故這個(gè)算法的結(jié)果是2.
答案:2
7.下面給出了一個(gè)問(wèn)題的算法:
第一步,輸入a.
第二步,如果a≥4,則y=2a-1;否則,y=a2-2a+3.
第三步,輸出y的值。
問(wèn):(1)這個(gè)算法解決的是什么問(wèn)題?
(2)當(dāng)輸入的a的值為多少時(shí),輸出的數(shù)值最小?最小值是多少?
解:(1)這個(gè)算法解決的是求分段函數(shù)
y=2a-1,a≥4,a2-2a+3,a<4的函數(shù)值的問(wèn)題。
(2)當(dāng)a≥4時(shí),y=2a-1≥7;
當(dāng)a<4時(shí),y=a2-2a+3=(a-1)2+2≥2,
∵當(dāng)a=1時(shí),y取得最小值2.
∴當(dāng)輸入的a值為1時(shí),輸出的數(shù)值最小為2.
8.“韓信點(diǎn)兵”問(wèn)題:韓信是漢高祖手下的大將,他英勇善戰(zhàn),謀略超群,為漢朝的建立立下了不朽功勛。據(jù)說(shuō)他在一次點(diǎn)兵的時(shí)候,為保住軍事秘密,不讓敵人知道自己部隊(duì)的軍事實(shí)力,采用下述點(diǎn)兵方法:①先令士兵從1~3報(bào)數(shù),結(jié)果最后一個(gè)士兵報(bào)2;②又令士兵從1~5報(bào)數(shù),結(jié)果最后一個(gè)士兵報(bào)3;③又令士兵從1~7報(bào)數(shù),結(jié)果最后一個(gè)士兵報(bào)4.這樣韓信很快算出自己部隊(duì)里士兵的總數(shù)。請(qǐng)?jiān)O(shè)計(jì)一個(gè)算法,求出士兵至少有多少人。
解:第一步,首先確定最小的滿(mǎn)足除以3余2的正整數(shù):2.
第二步,依次加3就得到所有除以3余2的正整數(shù):2,5,8,11,14,17,20,….
第三步,在上列數(shù)中確定最小的滿(mǎn)足除以5余3的正整數(shù):8.
第四步,然后在自然數(shù)內(nèi)在8的基礎(chǔ)上依次加上15,得到8,23,38,53,….
第五步,在上列數(shù)中確定最小的滿(mǎn)足除以7余4的正整數(shù):53.
即士兵至少有53人。
高二數(shù)學(xué)教案 24
(1)平面向量基本定理的內(nèi)容是什么?
(2)如何定義平面向量基底?
(3)兩向量夾角的定義是什么?如何定義向量的垂直?
[新知初探]
1、平面向量基本定理
條件e1,e2是同一平面內(nèi)的兩個(gè)不共線向量
結(jié)論這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2
基底不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底
[點(diǎn)睛]對(duì)平面向量基本定理的理解應(yīng)注意以下三點(diǎn):①e1,e2是同一平面內(nèi)的兩個(gè)不共線向量;②該平面內(nèi)任意向量a都可以用e1,e2線性表示,且這種表示是的;③基底不,只要是同一平面內(nèi)的兩個(gè)不共線向量都可作為基底。
2、向量的夾角
條件兩個(gè)非零向量a和b
產(chǎn)生過(guò)程
作向量=a,=b,則∠AOB叫做向量a與b的夾角
范圍0°≤θ≤180°
特殊情況θ=0°a與b同向
θ=90°a與b垂直,記作a⊥b
θ=180°a與b反向
[點(diǎn)睛]當(dāng)a與b共線同向時(shí),夾角θ為0°,共線反向時(shí),夾角θ為180°,所以?xún)蓚€(gè)向量的夾角的范圍是0°≤θ≤180°。
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯(cuò)誤的打“×”)
(1)任意兩個(gè)向量都可 ()
(2)一個(gè)平面內(nèi)有無(wú)數(shù)對(duì)不共線的向量都可作為表示該平面內(nèi)所有向量的基底。()
(3)零向量不可 ()
答案:(1)×(2)√(3)√
2、若向量a,b的夾角為30°,則向量—a,—b的夾角為()
A、60°B、30°
C、120°D、150°
答案:B
3、設(shè)e1,e2是同一平面內(nèi)兩個(gè)不共線的向量,以下各組向量中不能作為基底的是()
A、e1,e2B、e1+e2,3e1+3e2
C、e1,5e2D、e1,e1+e2
答案:B
4、在等腰Rt△ABC中,∠A=90°,則向量,的夾角為XXXXXX。
答案:135°
用基底表示向量
[典例]如圖,在平行四邊形ABCD中,設(shè)對(duì)角線=a,=b,試用基底a,b表示,。
[解]法一:由題意知,==12=12a,==12=12b。
所以=+=—=12a—12b,
=+=12a+12b,
法二:設(shè)=x,=y,則==y,
又+=,—=,則x+y=a,y—x=b,
所以x=12a—12b,y=12a+12b,
即=12a—12b,=12a+12b。
用基底表示向量的方法
將兩個(gè)不共線的向量作為基底表示其他向量,基本方法有兩種:一種是運(yùn)用向量的線性運(yùn)算法則對(duì)待求向量不斷進(jìn)行轉(zhuǎn)化,直至用基底表示為止;另一種是通過(guò)列向量方程或方程組的形式,利用基底表示向量的性求解。
[活學(xué)活用]
如圖,已知梯形ABCD中,AD∥BC,E,F(xiàn)分別是AD,BC邊上的中點(diǎn),且BC=3AD,=a,=b。試以a,b為基底表示。
解:∵AD∥BC,且AD=13BC,
∴=13=13b。
∵E為AD的中點(diǎn),
∴==12=16b。
∵=12,∴=12b,
∴=++
=—16b—a+12b=13b—a,
=+=—16b+13b—a=16b—a,
=+=—(+)
=—(+)=—16b—a+12b
=a—23b。
高二數(shù)學(xué)教案 25
一、教學(xué)目標(biāo)
1、知識(shí)與技能
(1)理解流程圖的順序結(jié)構(gòu)和選擇結(jié)構(gòu)。
(2)能用文字語(yǔ)言表示算法,并能將算法用順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡(jiǎn)單的流程圖
2、過(guò)程與方法
學(xué)生通過(guò)模仿、操作、探索、經(jīng)歷設(shè)計(jì)流程圖表達(dá)解決問(wèn)題的過(guò)程,理解流程圖的結(jié)構(gòu)。
3情感、態(tài)度與價(jià)值觀
學(xué)生通過(guò)動(dòng)手作圖,、用自然語(yǔ)言表示算法,用圖表示算法。進(jìn)一步體會(huì)算法的基本思想程序化思想,在歸納概括中培養(yǎng)學(xué)生的邏輯思維能力。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):算法的順序結(jié)構(gòu)與選擇結(jié)構(gòu)。
難點(diǎn):用含有選擇結(jié)構(gòu)的流程圖表示算法。
三、學(xué)法與教學(xué)用具
學(xué)法:學(xué)生通過(guò)動(dòng)手作圖,、用自然語(yǔ)言表示算法,用圖表示算法,體會(huì)到用流程圖表示算法,簡(jiǎn)潔、清晰、直觀、便于檢查,經(jīng)歷設(shè)計(jì)流程圖表達(dá)解決問(wèn)題的過(guò)程。進(jìn)而學(xué)習(xí)順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡(jiǎn)單的流程圖。
教學(xué)用具:尺規(guī)作圖工具,多媒體。
四、教學(xué)思路
(一)問(wèn)題引入揭示課題
例1尺規(guī)作圖,確定線段的一個(gè)5等分點(diǎn)。
要求:同桌一人作圖,一人寫(xiě)算法,并請(qǐng)學(xué)生說(shuō)出答案。
提問(wèn):用文字語(yǔ)言寫(xiě)出算法有何感受?
引導(dǎo)學(xué)生體驗(yàn)到:顯得冗長(zhǎng),不方便、不簡(jiǎn)潔。
教師說(shuō)明:為了使算法的表述簡(jiǎn)潔、清晰、直觀、便于檢查,我們今天學(xué)習(xí)用一些通用圖型符號(hào)構(gòu)成一張圖即流程圖表示算法。
本節(jié)要學(xué)習(xí)的是順序結(jié)構(gòu)與選擇結(jié)構(gòu)。
右圖即是同流程圖表示的算法。
(二)觀察類(lèi)比理解課題
1、投影介紹流程圖的符號(hào)、名稱(chēng)及功能說(shuō)明。
符號(hào)符號(hào)名稱(chēng)功能說(shuō)明終端框算法開(kāi)始與結(jié)束處理框算法的各種處理操作判斷框算法的各種轉(zhuǎn)移
輸入輸出框輸入輸出操作指向線指向另一操作
2、講授順序結(jié)構(gòu)及選擇結(jié)構(gòu)的概念及流程圖
(1)順序結(jié)構(gòu)
依照步驟依次執(zhí)行的一個(gè)算法
流程圖:
(2)選擇結(jié)構(gòu)
對(duì)條件進(jìn)行判斷來(lái)決定后面的步驟的結(jié)構(gòu)
流程圖:
3、用自然語(yǔ)言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式當(dāng)r=10時(shí)寫(xiě)出計(jì)算圓的面積的算法,并畫(huà)出流程圖。
解:
算法(自然語(yǔ)言)
①把10賦與r
②用公式求s
③輸出s
流程圖
(2)已知函數(shù)對(duì)于每輸入一個(gè)x值都得到相應(yīng)的函數(shù)值,寫(xiě)出算法并畫(huà)流程圖。
算法:(語(yǔ)言表示)
①輸入x值
②判斷x的范圍,若,用函數(shù)Y=x+1求函數(shù)值;否則用Y=2—x求函數(shù)值
③輸出Y的值
流程圖
小結(jié):含有數(shù)學(xué)中需要分類(lèi)討論的或與分段函數(shù)有關(guān)的問(wèn)題,均要用到選擇結(jié)構(gòu)。
學(xué)生觀察、類(lèi)比、說(shuō)出流程圖與自然語(yǔ)言對(duì)比有何特點(diǎn)?(直觀、清楚、便于檢查和交流)
(三)模仿操作經(jīng)歷課題
1、用流程圖表示確定線段A、B的一個(gè)16等分點(diǎn)
2、分析講解例2;
分析:
思考:有多少個(gè)選擇結(jié)構(gòu)?相應(yīng)的流程圖應(yīng)如何表示?
流程圖:
(四)歸納小結(jié)鞏固課題
1、順序結(jié)構(gòu)和選擇結(jié)構(gòu)的模式是怎樣的?
2、怎樣用流程圖表示算法。
高二數(shù)學(xué)公開(kāi)課優(yōu)秀教案(優(yōu)秀28篇)
(六)作業(yè)P991
高二數(shù)學(xué)優(yōu)秀教案 26
教學(xué)目標(biāo)
1、知識(shí)與技能:理解命題的概念和命題的構(gòu)成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫(xiě)成“若p,則q”的形式;
2、過(guò)程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問(wèn)題和解決問(wèn)題的能力;
3、情感、態(tài)度與價(jià)值觀:通過(guò)學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):命題的概念、命題的構(gòu)成
難點(diǎn):分清命題的條件、結(jié)論和判斷命題的真假
教學(xué)過(guò)程
一、復(fù)習(xí)回顧
引入:初中已學(xué)過(guò)命題的知識(shí),請(qǐng)同學(xué)們回顧:什么叫做命題?
二、新課教學(xué)
下列語(yǔ)句的表述形式有什么特點(diǎn)?你能判斷他們的真假嗎?
(1)若直線a∥b,則直線a與直線b沒(méi)有公共點(diǎn).
(2)2+4=7.
(3)垂直于同一條直線的兩個(gè)平面平行.
(4)若x2=1,則x=1.
(5)兩個(gè)全等三角形的面積相等.
(6)3能被2整除.
討論、判斷:學(xué)生通過(guò)討論,總結(jié):所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。
教師的引導(dǎo)分析:所謂判斷,就是肯定一個(gè)事物是什么或不是什么,不能含混不清。
抽象、歸納:
1、命題定義:一般地,我們把用語(yǔ)言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句叫做命題.
命題的定義的要點(diǎn):能判斷真假的陳述句.
在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,請(qǐng)學(xué)生舉幾個(gè)數(shù)學(xué)命題的例子.教師再與學(xué)生共同從命題的定義,判斷學(xué)生所舉例子是否是命題,從“判斷”的角度來(lái)加深對(duì)命題這一概念的理解.
例1:判斷下列語(yǔ)句是否為命題?
(1)空集是任何集合的子集.
(2)若整數(shù)a是素?cái)?shù),則是a奇數(shù).
(3)指數(shù)函數(shù)是增函數(shù)嗎?
(4)若平面上兩條直線不相交,則這兩條直線平行.
(5)=-2.
(6)x>15.
讓學(xué)生思考、辨析、討論解決,且通過(guò)練習(xí),引導(dǎo)學(xué)生總結(jié):判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看兩點(diǎn):第一是“陳述句”,第二是“可以判斷真假”,這兩個(gè)條件缺一不可.疑問(wèn)句、祈使句、感嘆句均不是命題.
解略。
引申:以前,同學(xué)們學(xué)習(xí)了很多定理、推論,這些定理、推論是否是命題?同學(xué)們可否舉出一些定理、推論的例子來(lái)看看?
通過(guò)對(duì)此問(wèn)的思考,學(xué)生將清晰地認(rèn)識(shí)到定理、推論都是命題.
過(guò)渡:同學(xué)們都知道,一個(gè)定理或推論都是由條件和結(jié)論兩部分構(gòu)成(結(jié)合學(xué)生所舉定理和推論的例子,讓學(xué)生分辨定理和推論條件和結(jié)論,明確所有的定理、推論都是由條件和結(jié)論兩部分構(gòu)成)。緊接著提出問(wèn)題:命題是否也是由條件和結(jié)論兩部分構(gòu)成呢?
2、命題的構(gòu)成――條件和結(jié)論
定義:從構(gòu)成來(lái)看,所有的命題都具由條件和結(jié)論兩部分構(gòu)成.在數(shù)學(xué)中,命題常寫(xiě)成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結(jié)論.
例2:指出下列命題中的條件p和結(jié)論q,并判斷各命題的真假.
(1)若整數(shù)a能被2整除,則a是偶數(shù).
(2)若四邊行是菱形,則它的對(duì)角線互相垂直平分.
(3)若a>0,b>0,則a+b>0.
(4)若a>0,b>0,則a+b<0.
(5)垂直于同一條直線的兩個(gè)平面平行.
此題中的(1)(2)(3)(4),較容易,估計(jì)學(xué)生較容易找出命題中的條件p和結(jié)論q,并能判斷命題的真假。其中設(shè)置命題(3)與(4)的目的在于:通過(guò)這兩個(gè)例子的比較,學(xué)更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結(jié)果是對(duì)的還是錯(cuò)的。
此例中的命題(5),不是“若P,則q”的形式,估計(jì)學(xué)生會(huì)有困難,此時(shí),教師引導(dǎo)學(xué)生一起分析:已知的事項(xiàng)為“條件”,由已知推出的事項(xiàng)為“結(jié)論”.
解略。
過(guò)渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結(jié)論是正確的,而有些命題的結(jié)論是錯(cuò)誤的,那么我們就有了對(duì)命題的一種分類(lèi):真命題和假命題.
3、命題的分類(lèi)
真命題:如果由命題的條件P通過(guò)推理一定可以得出命題的結(jié)論q,那么這樣的命題叫做真命題.
假命題:如果由命題的條件P通過(guò)推理不一定可以得出命題的結(jié)論q,那么這樣的命題叫做假命題.
強(qiáng)調(diào):
(1)注意命題與假命題的區(qū)別.如:“作直線AB”.這本身不是命題.也更不是假命題.
(2)命題是一個(gè)判斷,判斷的結(jié)果就有對(duì)錯(cuò)之分.因此就要引入真命題、假命題的的概念,強(qiáng)調(diào)真假命題的大前提,首先是命題。
判斷一個(gè)數(shù)學(xué)命題的真假方法:
(1)數(shù)學(xué)中判定一個(gè)命題是真命題,要經(jīng)過(guò)證明.
(2)要判斷一個(gè)命題是假命題,只需舉一個(gè)反例即可.
例3:把下列命題寫(xiě)成“若P,則q”的形式,并判斷是真命題還是假命題:
(1)面積相等的兩個(gè)三角形全等。
(2)負(fù)數(shù)的立方是負(fù)數(shù)。
(3)對(duì)頂角相等。
分析:要把一個(gè)命題寫(xiě)成“若P,則q”的形式,關(guān)鍵是要分清命題的條件和結(jié)論,然后寫(xiě)成“若條件,則結(jié)論”即“若P,則q”的形式.解略。
三、鞏固練習(xí):
P4第2,3。
四、作業(yè):
P8:習(xí)題1.1A組~第1題
五、教學(xué)反思
師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容.
1、什么叫命題?真命題?假命題?
2、命題是由哪兩部分構(gòu)成的`?
3、怎樣將命題寫(xiě)成“若P,則q”的形式.
4、如何判斷真假命題.
高二數(shù)學(xué)優(yōu)秀教案5 27
課題1.1.1命題及其關(guān)系(一)課型新授課
目標(biāo)
1)知識(shí)方法目標(biāo)
了解命題的概念,
2)能力目標(biāo)
會(huì)判斷一個(gè)命題的真假,并會(huì)將一個(gè)命題改寫(xiě)成“若 ,則 ”的形式。
重點(diǎn)
難點(diǎn)
1)重點(diǎn):命題的改寫(xiě)
2)難點(diǎn):命題概念的理解,命題的條件與結(jié)論區(qū)分
教法與學(xué)法
教法:
教學(xué)過(guò)程備注
1、課題引入
(創(chuàng)設(shè)情景)
閱讀下列語(yǔ)句,你能判斷它們的真假嗎?
(1)矩形的對(duì)角線相等;
(2)3 ;
(3)3 嗎?
(4)8是24的約數(shù);
(5)兩條直線相交,有且只有一個(gè)交點(diǎn);
(6)他是個(gè)高個(gè)子。
2、問(wèn)題探究
1)難點(diǎn)突破
2)探究方式
3)探究步驟
4)高潮設(shè)計(jì)
1、命題的概念:
①命題:可以判斷真假的陳述句叫做命題(proposition)。
上述6個(gè)語(yǔ)句中,(1)(2)(4)(5)(6)是命題。
②真命題:判斷為真的語(yǔ)句叫做真命題(true proposition);
假命題:判斷為假的語(yǔ)句叫做假命題(false proposition)。
上述5個(gè)命題中,(2)是假命題,其它4個(gè)都是真命題。
③例1:判斷下列語(yǔ)句中哪些是命題?是真命題還是假命題?
(1)空集是任何集合的子集;
(2)若整數(shù) 是素?cái)?shù),則 是奇數(shù);
(3)2小于或等于2;
(4)對(duì)數(shù)函數(shù)是增函數(shù)嗎?
(5) ;
(6)平面內(nèi)不相交的兩條直線一定平行;
(7)明天下雨。
(學(xué)生自練 個(gè)別回答 教師點(diǎn)評(píng))
④探究:學(xué)生自我舉出一些命題,并判斷它們的真假。
2、 將一個(gè)命題改寫(xiě)成“若 ,則 ”的形式:
①例1中的(2)就是一個(gè)“若 ,則 ”的命題形式,我們把其中的 叫做命題的'條件, 叫做命題的結(jié)論。
②試將例1中的命題(6)改寫(xiě)成“若 ,則 ”的形式。
③例2:將下列命題改寫(xiě)成“若 ,則 ”的形式。
(1)兩條直線相交有且只有一個(gè)交點(diǎn);
(2)對(duì)頂角相等;
(3)全等的兩個(gè)三角形面積也相等。
(學(xué)生自練 個(gè)別回答 教師點(diǎn)評(píng))
3、 小結(jié):命題概念的理解,會(huì)判斷一個(gè)命題的真假,并會(huì)將命題改寫(xiě)“若 ,則 ”的形式。
引導(dǎo)學(xué)生歸納出命題的概念,強(qiáng)調(diào)判斷一個(gè)語(yǔ)句是不是命題的兩個(gè)關(guān)鍵點(diǎn):是否符合“是陳述句”和“可以判斷真假”。
通過(guò)例子引導(dǎo)學(xué)生辨別命題,區(qū)分命題的條件和結(jié)論。改寫(xiě)為“若 ,則 ”的形式,為后續(xù)的學(xué)習(xí)打好基礎(chǔ)。
3、練習(xí)提高1. 練習(xí):教材 P4 1、2、3
師生互動(dòng)
4、作業(yè)設(shè)計(jì)
作業(yè):
1、教材P8第1題
2、作業(yè)本1-10
5、課后反思